Skip to main content

Effective Elastic Properties

  • Chapter
  • First Online:
Transport Processes in Macroscopically Disordered Media

Abstract

Basic notions of elasticity theory in composites are presented. Effective elastic properties in the vicinity of percolation threshold are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In elasticity theory such a medium is called linearly elastic Hooke medium.

References

  1. Amir A, Krich JJ, Vitelli V et al (2013) Emergent percolation length and localization in random elastic networks. Phys Rev X 3, 021017-1–021017-1 1 (2013)

    Google Scholar 

  2. Arbabi S, Sahimi M (1990) Critical properties of viscoelasticity of gels and elastic percolation networks. Phys Rev Lett 65:725–728

    Article  ADS  Google Scholar 

  3. Berdichevsky VL (1983) Variational principles of continuous mechanics, Nauka, M. 448 p (in Russian)

    Google Scholar 

  4. Bergman DJ (1986) Elastic moduli near percolation threshold in a two-dimensional random network of a rigid and nonrigid bonds. Phys Rev B 33:2013–2016

    Article  ADS  Google Scholar 

  5. Bergman DJ (2002) Exact relations between critical exponents for elastic stiffness and electrical conductivity of two-dimensional percolating networks. Phys Rev E 0261124-1–026124-7

    Google Scholar 

  6. Bergman DJ (2003) Exact relation between elastic and electric response of d-dimensional percolating networks with angle bending forces. J Stat Phys 111:171–199

    Article  MathSciNet  MATH  Google Scholar 

  7. Bishop AR, Lookman T, Saxena A et al (2003) Elasticity-driven nanoscale texturing in complex electronic materials. Europhys Lett 63:289–295

    Article  ADS  Google Scholar 

  8. Boolchand P, Lucovsky G, Phillips JC et al (2005) Self-organization and the physics of glassy networks. Philos Mag 85:3823–3838

    Article  ADS  Google Scholar 

  9. Broedersz CP, Mao X, Lubensky TC et al (2011) Criticality and isostaticity in fiber networks. Nat Phys 7:983–988

    Article  Google Scholar 

  10. Christensen R (2005) Mechanics of composite materials dover. New York 355 p (2005)

    Google Scholar 

  11. Chubynsky MV, Thorpe MF (2007) Algorithms for 3D rigidity analysis and a first order percolation transition. Phys Rev E 76:041135–1–041135–28

    Article  ADS  Google Scholar 

  12. Chubinsky M (2009) Characterizing the intermediate phases through topological analysis. In: Micoulaut M, Popescu M (eds) Rigidity transitions and Boolchand intermediate phases in nanomaterials. INOE, Bucharest, Romania, pp 213–260

    Google Scholar 

  13. Dapp WB, Lucke A, Persson BNJ et al (2012) Self-affine elastic contacts: percolation and leakage. Phys Rev Lett 108:2443011–2443014

    Article  Google Scholar 

  14. Farrago O, Kantor Y (2000) Entropic elasticity of phantom percolation networks. Europhys Lett 52:413–419

    Article  ADS  Google Scholar 

  15. Feng S (1985) Percolation properties of granular elastic networks in two dimensions. Phys Rev B 32:R510–R513

    Article  ADS  Google Scholar 

  16. Gabrielli A, Cafiero R, Caldarelli G (1999) Statistical properties of fractures in damaged materials. Europhys Lett 45:13–19

    Article  ADS  Google Scholar 

  17. Head DA, MacKintosh FC, Levine AJ (2003) Non-universality of elastic exponents in random bond–bending networks. Phys Rev E 68:025101-1–025101-4

    ADS  Google Scholar 

  18. Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:061907-1–061907-16

    ADS  Google Scholar 

  19. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894

    Article  ADS  Google Scholar 

  20. Landau LD, Lifshitz EM (1987) Theory of elasticity, 3rd edn, vol 7. Butterworth-Heinemann, Oxford 187 p

    Google Scholar 

  21. Micoulaut M, Phillips JC (2007) Onset of rigidity in glasses: from random to self-organized networks. J Non-Cryst Solids 353:1732–1740

    Article  ADS  Google Scholar 

  22. Nakanishi H (1993) Effect of loops on the vibrational spectrum of percolation network. Physica A 196:33–41

    Article  ADS  Google Scholar 

  23. Norris JQ, Turcotte DL, Rundle JB et al (2014) Loopless nontrapping invasion-percolation model for fracking. Phys Rev E 89:022119-1–022119-24

    Article  ADS  Google Scholar 

  24. Norris JQ, Turcotte DL, Rundle JB et al (2015) Anisotropy in fracking: a percolation model for observed microseismicity. Pure Appl Geophys 172:7–21

    Article  ADS  Google Scholar 

  25. Nukala PK, Simunovi S, Zapperi S (2004) Percolation and localization in the random fuse model. J Stat Mech Theory Exp 2004:P08001-1–P08001-21

    Article  MATH  Google Scholar 

  26. Ostoja-Starzewski M, Sheng PY, Alzebdeh K (1996) Spring network models in elasticity and fracture of composites and polycrystals. Comput Mater Sci 7:82–93

    Article  Google Scholar 

  27. Pobedrja BE (1984) Mechanics of composite materials. Moscow University 336 p (in Russian)

    Google Scholar 

  28. Roux S (1986) Relation between elastic and scalar transport exponent in percolation. J Phys A 19:L351–L356

    Article  ADS  Google Scholar 

  29. Roux S, Guyon E (1985) Mechanical percolation: a small beam lattice study. J Phys Lett 46:L999–L1004

    Article  Google Scholar 

  30. Roux S, Guyon E (1985) Mechanical percolation a small beam lattice study. C. R. Acad Sc Paris 301:367–370

    Google Scholar 

  31. Sadhukhan S, Dutta T, Tarafdar S et al (2011) Crack formation in composites through a spring model. Phys A 390:731–740

    Article  Google Scholar 

  32. Sahimi M (1994) Applications of percolation theory. Taylor & Francis 258 p

    Google Scholar 

  33. Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:213–395

    Article  ADS  MathSciNet  Google Scholar 

  34. Sendeckyj GP (ed) (1974) Mechanics of composite materials, vol 2. Academic Press, New York 503 p

    Google Scholar 

  35. Shermergor TD (1977) Theory of elasticity for microinhomogeneous media. Nauka, Moscow 400 p (in Russian)

    Google Scholar 

  36. Snarskii AA (1988) Critical behaviour of elasticity modules for macroscopically inhomogeneous media near threshold percolation. Ukrain Fiz Jur T 33:1063–1065

    Google Scholar 

  37. Toussaint R (2005) Interating damage models mapped onto Ising and perolation models. Phys Rev E71:046127-1–046127-16

    Google Scholar 

  38. Wettstein J, Wittel FK, Araujo NAM et al (2012) From invasion percolation to flow in rock fracture networks. Physica A 391:264–277

    Article  ADS  Google Scholar 

  39. Wilhelm J, Frey E (2003) Elasticity of stiff polymer networks. Phys Rev Lett 91:108103-1–108103-4

    Article  ADS  Google Scholar 

  40. Yucht MG, Sheinman M, Broedersz CP (2013) Dynamical behavior of disordered spring networks. Soft Matter 9:7000–7006

    Article  ADS  Google Scholar 

  41. Zabolitzky JG, Bergman DJ, Stauffer D (1986) Precision calculation of elasticity for percolation. J Stat Phys 44:211–223

    Article  ADS  Google Scholar 

  42. Zhang R, Brown FLH (2008) Cytoskeleton mediated effective elastic properties of model red blood cell membranes. J Chem Phys 129:065101-1–065101-38

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Snarskii .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snarskii, A.A., Bezsudnov, I.V., Sevryukov, V.A., Morozovskiy, A., Malinsky, J. (2016). Effective Elastic Properties. In: Transport Processes in Macroscopically Disordered Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8291-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8291-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8290-2

  • Online ISBN: 978-1-4419-8291-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics