Skip to main content

Bin Packing Approximation Algorithms: Survey and Classification

  • Reference work entry
  • First Online:

Abstract

The survey presents an overview of approximation algorithms for the classical bin packing problem and reviews the more important results on performance guarantees. Both on-line and off-line algorithms are analyzed. The investigation is extended to variants of the problem through an extensive review of dual versions, variations on bin sizes and item packing, as well as those produced by additional constraints. The bin packing papers are classified according to a novel scheme that allows one to create a compact synthesis of the topic, the main results, and the corresponding algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. M. Adler, P.B. Gibbons, Y. Matias, Scheduling space sharing for internet advertising. J. Sched. 5, 103–119 (2002) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert mutex.\)

    MathSciNet  MATH  Google Scholar 

  2. S. Albers, Better bounds for on-line scheduling, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 130–139 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)

    Google Scholar 

  3. N. Alon, Y. Azar, G.J. Woeginger, T. Yadid, Approximation schemes for scheduling, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA (SIAM, 1997), pp. 493–500 \(\bullet \ \ mincap\vert \mathit{off - line}\vert PTAS.\)

    Google Scholar 

  4. R.J. Anderson, E.W. Mayr, M.K. Warmuth, Parallel approximation algorithms for bin packing. Inf. Comput. 82, 262–277 (1989) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}.\)

    MathSciNet  MATH  Google Scholar 

  5. S.F. Assmann, Problems in Discrete Applied Mathematics. PhD thesis, Mathematics Department MIT, Cambridge, MA, 1983

    Google Scholar 

  6. S.F. Assmann, D.S. Johnson, D.J. Kleitman, J.Y.-T. Leung, On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984) \(\bullet \ \ cover\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }.\)

    Google Scholar 

  7. Y. Azar, O. Regev, On-line bin-stretching. Theor. Comput. Sci. 268, 17–41 (2001) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}\vert stretching.\)

    MathSciNet  MATH  Google Scholar 

  8. Y. Azar, J. Boyar, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing, in SWAT ’00, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway. Lecture Notes in Computer Science, vol. 1851 (Springer, 2000), pp. 200–213. This is the preliminary version of [9]

    Google Scholar 

  9. Y. Azar, J. Boyar, L. Epstein, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing. Algorithmica 34, 181–196 (2002) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  10. L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems, in ISAAC 2001, Christchurch, New Zealand. Lecture Notes in Computer Science, vol. 2223 (Springer, 2001), pp. 695–706. This is the preliminary version of [11]

    Google Scholar 

  11. L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems. Discret. Appl. Math. 143, 238–251 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  12. B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6, 49–70 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  13. B.S. Baker, E.G. Coffman Jr., A tight asymptotic bound for next-fit-decreasing bin-packing. SIAM J. Algebra. Discret. Methods 2, 147–152 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    Google Scholar 

  14. J. Balogh, J. Békési, G. Galambos, M.C. Markót, Improved lower bounds for semi-online bin packing problems. Computing 84, 139–148 (2009) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bounds}.\)

    MathSciNet  MATH  Google Scholar 

  15. J. Balogh, J. Békési, G. Galambos, New lower bounds for certain bin packing algorithms, in WAOA 2010, Liverpool, UK. Lecture Notes in Computer Science, vol. 6534 (Springer, 2011), pp. 25–36 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    Google Scholar 

  16. N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects, in 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), vol. 223 (Montréal, Québec, Canada, 2001), pp. 38–46

    Google Scholar 

  17. N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects and frequency allocation in cellular networks. Wirel. Netw. 15, 821–830 (2009) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert controllable.\)

    Google Scholar 

  18. A. Bar-Noy, R.E. Ladner, T. Tamir, Windows scheduling as a restricted version of bin packing. ACM Trans. Algorithms 3, 1–22 (2007) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\vert discrete.\)

    MathSciNet  Google Scholar 

  19. Y. Bartal, A. Fiat, H. Karloff, R. Vohra, New algorithms for an ancient scheduling problem, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 1992, pp. 51–58 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)

    Google Scholar 

  20. Y. Bartal, H. Karloff, Y. Rabani, A better lower bound for on-line scheduling. Inf. Process. Lett. 50, 113–116 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  21. W. Bein, J.R. Correa, X. Han, A fast asymptotic approximation scheme for bin packing with rejection. Theor. Comput. Sci. 393, 14–22 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert \{B_{i}\},controllable.\)

    MathSciNet  MATH  Google Scholar 

  22. J. Békési, G. Galambos, A 5/4 linear time bin packing algorithm. Technical report OR-97-2, Teachers Trainer College, Szeged, Hungary, 1997. This is the preliminary version of [23]

    Google Scholar 

  23. J. Békési, G. Galambos, H. Kellerer, A 5/4 linear time bin packing algorithm. J. Comput. Syst. Sci. 60, 145–160 (2000) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\)

    MATH  Google Scholar 

  24. R. Berghammer, F. Reuter, A linear approximation algorithm for bin packing with absolute approximation factor 3/2. Sci. Comput. Program. 48, 67–80 (2003) \(\bullet \ \ pack\vert \mathit{linear - time}\vert R_{A}.\)

    MathSciNet  MATH  Google Scholar 

  25. V. Bilo, On the packing of selfish items, in Proceedings of the 20th International Parallel and Distributed Processing Sysmposium (IPDPS), Rhodes Island, Greece (IEEE, 2006), pp. 25–29 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\)

    Google Scholar 

  26. J. Blazewicz, K. Ecker, A linear time algorithm for restricted bin packing and scheduling problems. Oper. Res. Lett. 2, 80–83 (1983) \(\bullet \ \ mincap,pack\vert \mathit{off - line},\mathit{linear - time}\vert \mathit{running - time}\vert restricted.\)

    MathSciNet  MATH  Google Scholar 

  27. J. Boyar, L.M. Favrholdt, The relative worst order ratio for online algorithms. ACM Trans. Algorithms 3, 1–24 (2007) \(\bullet \ \ pack,maxcard(subset)\vert \mathit{on - line}.\)

    MathSciNet  Google Scholar 

  28. J. Boyar, K.S. Larsen, M.N. Nielsen, The accomodation function: a generalization of the competitive ratio. SIAM J. Comput. 31, 233–258 (2001) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}\vert restricted.\)

    MathSciNet  MATH  Google Scholar 

  29. J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem, in Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 3623 (Springer, Berlin/New York, 2005), pp. 387–408. This is the preliminary version of [30]

    Google Scholar 

  30. J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem. Theor. Comput. Sci. 362, 127–139 (2006) \(\bullet \ \ maxpack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    MATH  Google Scholar 

  31. J. Boyar, L. Epstein, A. Levin, Tight results for Next Fit and Worst Fit with resource augmentation. Theor. Comput. Sci. 411, 2572–2580 (2010) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert stretching.\)

    MathSciNet  MATH  Google Scholar 

  32. D.J. Brown, A lower bound for on-line one-dimensional bin-packing algorithms. Technical report R-864, University of Illinois, Coordinated Science Laboratory, Urbana, IL, 1979 \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    Google Scholar 

  33. R.E. Burkard, G. Zhang, Bounded space on-line variable-sized bin packing. Acta Cybern. 13, 63–76 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MathSciNet  MATH  Google Scholar 

  34. A. Caprara, U. Pferschy, Worst-case analysis of the subset sum algorithm for bin packing. Oper. Res. Lett. 32, 159–166 (2004) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  35. W.-T. Chan, F.Y.L. Chin, D. Ye, G. Zhang, Y. Zhang, Online bin packing of fragile objects with application in cellular networks. JOCO 14(4), 427–435 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  36. J.W. Chan, T. Lam, P.W.H. Wong, Dynamic bin packing of unit fractions items. Theor. Comput. Sci. 409, 521–529 (2008) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bounds}\vert discrete.\)

    MathSciNet  MATH  Google Scholar 

  37. J.W. Chan, P.W.H. Wong, F.C.C. Yung, On dynamic bin packing: an improved lower bound and resource augmentation analysis. Algorithmica 53, 172–206 (2009) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bound}\vert discrete,stretching.\)

    MathSciNet  MATH  Google Scholar 

  38. B. Chandra, Does randomization help in on-line bin packing? Inf. Process. Lett. 43, 15–19 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    Google Scholar 

  39. A.K. Chandra, D.S. Hirschler, C.K. Wong, Bin packing with geometric constraints in computer network design. Oper. Res. 26, 760–772 (1978) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  40. C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35, 713–728 (2005)

    MathSciNet  Google Scholar 

  41. B. Chen, A. van Vliet, G.J. Woeginger, New lower and upper bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bounds}.\)

    MathSciNet  MATH  Google Scholar 

  42. E.G. Coffman Jr., An introduction to combinatorial models of dynamic storage allocation. SIAM Rev. 25, 311–325 (1983)

    MathSciNet  Google Scholar 

  43. E.G. Coffman Jr., J. Csirik, Performance guarantees for one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 32, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 32–1–32–18

    Google Scholar 

  44. E.G. Coffman Jr., J. Csirik, A classification scheme for bin packing theory. Acta Cybern. 18, 47–60 (2007) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}.\)

    Google Scholar 

  45. E.G. Coffman Jr., J.Y.-T. Leung, Combinatorial analysis of an efficient algorithm for processor and storage allocation. SIAM J. Comput. 8, 202–217 (1979) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\)

    MathSciNet  Google Scholar 

  46. E.G. Coffman Jr., G.S. Lueker, Probabilistic Analysis of Packing and Partitioning Algorithms (Wiley, New York, 1991)

    Google Scholar 

  47. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7, 1–17 (1978) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\)

    MathSciNet  Google Scholar 

  48. E.G. Coffman Jr., J.Y.-T. Leung, D.W. Ting, Bin packing: maximizing the number of pieces packed. Acta Inform. 9, 263–271 (1978) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}.\)

    Google Scholar 

  49. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Dynamic bin packing. SIAM J. Comput. 12, 227–258 (1983) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    Google Scholar 

  50. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin-packing: An updated survey, in Algorithm Design for Computer System Design, ed. by G. Ausiello, M. Lucertini, P. Serafini (Springer, Wien, 1984), pp. 49–106

    Google Scholar 

  51. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Bin packing with divisible item sizes. J. Complex. 3, 405–428 (1987) \(\bullet \ \ pack,cover,maxcard(subset)\vert \mathit{on - line},\mathit{off - line},dynamic\vert \mathit{complexity}\vert \{B_{i}\},restricted.\)

    Google Scholar 

  52. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: a survey, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 46–93

    Google Scholar 

  53. E.G. Coffman Jr., G. Galambos, S. Martello, D. Vigo, Bin packing approximation algorithms: Combinatorial analysis, in Handbook of Combinatorial Optimization, ed. by D.-Z. Du, P.M. Pardalos (Kluwer, Boston, 1999)

    Google Scholar 

  54. E.G. Coffman Jr., J. Csirik, J.Y.-T. Leung, Variable-sized bin packing and bin covering, in Handbook of Approximation Algorithms and Metaheuristics, chapter 34, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 34–1–34–11

    Google Scholar 

  55. E.G. Coffman Jr., J. Csirik, J.Y-T. Leung, Variants of classical one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 33, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 33–1–33–13

    Google Scholar 

  56. J. Csirik, An on-line algorithm for variable-sized bin packing. Acta Inform. 26, 697–709 (1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    Google Scholar 

  57. J. Csirik, The parametric behaviour of the first fit decreasing bin-packing algorithm. J. Algorithms 15, 1–28 (1993) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  58. J. Csirik, B. Imreh, On the worst-case performance of the Next-k-Fit bin-packing heuristic. Acta Cybern. 9, 89–105 (1989) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bounds}.\)

    MathSciNet  Google Scholar 

  59. J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first, in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 1991, pp. 309–319. This is the preliminary version of [60]

    Google Scholar 

  60. J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first. Algorithmica 31, 115–138 (2001) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  61. J. Csirik, V. Totik, On-line algorithms for a dual version of bin packing. Discret. Appl. Math. 21, 163–167 (1988) \(\bullet \ \ cover\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  62. J. Csirik, G.J. Woeginger, Online packing and covering problems, in Online Algorithms: The State of the Art, ed. by A. Fiat, G.J. Woeginger. Lecture Notes in Computer Science, vol. 1442 (Springer, Berlin, 1998), pp. 154–177

    Google Scholar 

  63. J. Csirik, G.J. Woeginger, Resource augmentation for online bounded space bin packing. J. Algorithms 44, 308–320 (2002) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\)

    MathSciNet  MATH  Google Scholar 

  64. J. Csirik, G. Galambos, G. Turan, Some results on bin-packing, in Proceedings of the EURO VI Conference, Vienna, Austria, 1983, pp. 52 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\)

    Google Scholar 

  65. J. Csirik, D.S. Johnson, C. Kenyon, Better approximation algorithms for bin covering, in Proceedings of the Twelft Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 557–566 \(\bullet \ \ cover\vert \mathit{off - line}\vert PTAS.\)

    Google Scholar 

  66. M. Demange, P. Grisoni, V.T. Paschos, Differential approximation algorithms for some combinatorial optimization problems. Theor. Comput. Sci. 209, 107–122 (1998) \(\bullet \ \ pack\vert \mathit{off - line}.\)

    Google Scholar 

  67. M. Demange, J. Monnot, V.T. Paschos, Bridging gap between standard and differential polynomial approximation: the case of bin-packing. Appl. Math. Lett. 12, 127–133 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  68. G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I) \leq (11/9)\ {\it \text{OPT}}(I) + 6/9\), in Combinatorics, Algorithms, Probabilistic and Experimental Methodologiesed. by B. Chen, M. Paterson, G. Zhang. Lecture Notes in Computer Science, vol. 4614 (Springer, Berlin, 2007), pp. 1–11 \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    Google Scholar 

  69. G. Dósa, Y. He, Bin packing problems with rejection penalties and their dual problems. Inf. Comput. 204, 795–815 (2006) \(\bullet \ \ pack,cover\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert controllable.\)

    MATH  Google Scholar 

  70. L. Epstein, Bin packing with rejection revisited, in WAOA, Zurich, Switzerland. Lecture Notes in Computer Science, vol. 4368 (Springer, 2006), pp. 146–159. This is the preliminary version of [73]

    Google Scholar 

  71. L. Epstein, Online bin packing with cardinality constraints. SIAM J. Discret. Math. 20, 1015–1030 (2007) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\},stretching,card(B) \leq k.\)

    Google Scholar 

  72. L. Epstein, On online bin packing with LIB constraints. Nav. Res. Logist. (NRL) 56, 780–786 (2009) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k,controllable.\)

    MATH  Google Scholar 

  73. L. Epstein, Bin packing with rejection revisited. Algorithmica 56, 505–528 (2010) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound},PTAS\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  74. L. Epstein, L.M. Favrholdt, On-line maximizing the number of items packed in variable-sized bins. Acta Cybern. 16, 57–66 (2003) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\vert \{B_{i}\}.\)

    Google Scholar 

  75. L. Epstein, E. Kleiman, Resource augmented semi-online bounded space bin packing. Discret. Appl. Math. 157, 2785–2798 (2009) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\vert stretching.\)

    MathSciNet  MATH  Google Scholar 

  76. L. Epstein, E. Kleiman, Selfish bin packing. Algorithmica (2011). To appear (online first: doi:10.1007/s00453-009-9348-6) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\)

    Google Scholar 

  77. L. Epstein, A. Levin, More on online bin packing with two item sizes. Discret. Optim. 5(4), 705–713 (2008) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert restricted,s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  78. L. Epstein, A. Levin, On bin packing with conflicts. SIAM J. Optim. 19, 1270–1298 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert mutex.\)

    MathSciNet  MATH  Google Scholar 

  79. L. Epstein, R. van Stee, Multidimensional packing problems, in Handbook of Approximation Algorithms and Metaheuristics, chapter 35, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 35–1–35–15

    Google Scholar 

  80. L. Epstein, R. van Stee, Online bin packing with resource augmentation. Discret. Optim. 4, 322–333 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\)

    MATH  Google Scholar 

  81. L. Epstein, R. van Stee, Approximation schemes for packing splittable items with cardinality constraints, in WAOA, Eilat, Israel. Lecture Notes in Computer Science, vol. 4927 (Springer, 2008), pp. 232–245 \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\)

    Google Scholar 

  82. L. Epstein, C. Imreh, A. Levin, Class constrained bin packing revisited. Theor. Comput. Sci. 411, 3073–3089 (2010) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },FPTAS\vert restricted,card(B) \leq k\mathit{colors}.\)

    MathSciNet  MATH  Google Scholar 

  83. U. Faigle, W. Kern, Gy. Turán, On the performance of on-line algorithms for partition problems. Acta Cybern. 9, 107–119 (1989) \(\bullet \ \ pack,mincap\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert restricted.\)

    MATH  Google Scholar 

  84. W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within \(1+\epsilon\) in linear time. Combinatorica 1, 349–355 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS.\)

    Google Scholar 

  85. L. Finlay, P. Manyem, Online LIB problems: heuristics for bin covering and lower bounds for bin packing. RAIRO Rech. Oper. 39, 163–183 (2005) \(\bullet \ \ pack,cover\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  86. D.C. Fisher, Next-fit packs a list and its reverse into the same number of bins. Oper. Res. Lett. 7, 291–293 (1988) \(\bullet \ \ pack\vert \mathit{bounded - space}.\)

    MathSciNet  MATH  Google Scholar 

  87. D.K. Friesen, Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput. 13, 170–181 (1984) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  88. D.K. Friesen, F.S. Kuhl, Analysis of a hybrid algorithm for packing unequal bins. SIAM J. Comput. 17, 23–40 (1988) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\vert \{B_{i}\}.\)

    MathSciNet  MATH  Google Scholar 

  89. D.K. Friesen, M.A. Langston, Variable sized bin packing. SIAM J. Comput. 15, 222–230 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MATH  Google Scholar 

  90. D.K. Friesen, M.A. Langston, Analysis of a compound bin-packing algorithm. SIAM J. Discret. Math. 4, 61–79 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  91. G. Galambos, A new heuristic for the classical bin-packing problem. Technical report 82, Institute fuer Mathematik, Augsburg, 1985 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    Google Scholar 

  92. G. Galambos, Parametric lower bound for on-line bin-packing. SIAM J. Algebra. Discret. Meth. 7, 362–367 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  93. G. Galambos, J.B.G. Frenk, A simple proof of Liang’s lower bound for on-line bin packing and the extension to the parametric case. Discret. Appl. Math. 41, 173–178 (1993) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  94. G. Galambos, G.J. Woeginger, An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 345–355 (1993) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\)

    MathSciNet  Google Scholar 

  95. G. Galambos, G.J. Woeginger, Repacking helps in bounded space on-line bin-packing. Computing 49, 329–338 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  96. G. Galambos, G.J. Woeginger, On-line bin packing – a restricted survey. Z. Oper. Res. 42, 25–45 (1995)

    MathSciNet  MATH  Google Scholar 

  97. G. Gambosi, A. Postiglione, M. Talamo, New algorithms for on-line bin packing, in Algorithms and Complexity, ed. by R. Petreschi, G. Ausiello, D.P. Bovet (World Scientific, Singapore, 1990), pp. 44–59. This is the preliminary version of [99]

    Google Scholar 

  98. G. Gambosi, A. Postiglione, M. Talamo, On-line maintenance of an approximate bin-packing solution. Nord. J. Comput. 4, 151–166 (1997) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\)

    MathSciNet  Google Scholar 

  99. G. Gambosi, A. Postiglione, M. Talamo, Algorithms for the relaxed online bin-packing model. SIAM J. Comput. 30, 1532–1551 (2000) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  100. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, New York, 1979)

    MATH  Google Scholar 

  101. M.R. Garey, D.S. Johnson, Approximation algorithm for bin-packing problems: a survey, in Analysis and Design of Algorithm in Combinatorial Optimization, ed. by G. Ausiello, M. Lucertini (Springer, New York, 1981), pp. 147–172

    Google Scholar 

  102. M.R. Garey, D.S. Johnson, A 71/60 theorem for bin packing. J. Complex. 1, 65–106 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  103. M.R. Garey, R.L. Graham, J.D. Ullmann, Worst-case analysis of memory allocation algorithms, in Proceedings of the 4th Annual ACM Symposium Theory of Computing, Denver, CO (ACM, New York, 1972), pp. 143–150

    Google Scholar 

  104. M.R. Garey, R.L. Graham, D.S. Johnson, A.C.-C. Yao, Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21, 257–298 (1976) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k,controllable.\)

    MathSciNet  MATH  Google Scholar 

  105. P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9, 849–859 (1961)

    MathSciNet  MATH  Google Scholar 

  106. P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem – (Part II). Oper. Res. 11, 863–888 (1963)

    MATH  Google Scholar 

  107. S.W. Golomb, On certain nonlinear recurring sequences. Am. Math. Mon. 70, 403–405 (1963)

    MathSciNet  MATH  Google Scholar 

  108. R.L. Graham, Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)

    Google Scholar 

  109. R.L. Graham, Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269 (1969) \(\bullet \ \ mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\)

    Google Scholar 

  110. R.L. Graham, Bounds on multiprocessing anomalies and related packing algorithms, in Proceedings of 1972 Spring Joint Computer Conference (AFIPS Press, Montvale, 1972), pp. 205–217 \(\bullet \ \ pack,mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\)

    Google Scholar 

  111. E.F. Grove, Online bin packing with lookahead, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA (SIAM, 1995), pp. 430–436 \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bound}.\)

    Google Scholar 

  112. G. Gutin, T.R. Jensen, A. Yeo, Batched bin packing. Discret. Optim. 2, 71–82 (2005) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  113. G. Gutin, T.R. Jensen, A. Yeo, On-line bin packing with two item sizes. Algorithm. Oper. Res. 1, 72–78 (2006) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert restricted.\)

    MathSciNet  MATH  Google Scholar 

  114. L.A. Hall, Approximation algorithms for scheduling, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 1–45

    Google Scholar 

  115. D.S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems (PWS Publishing Company, Boston, 1997)

    Google Scholar 

  116. D.S. Hochbaum, Various notions of approximation: good, better, best, and more, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 389–391

    Google Scholar 

  117. D.S. Hochbaum, D.B. Shmoys, A packing problem you can almost solve by sitting on your suitcase. SIAM J. Algebra. Discret. Methods 7, 247–257 (1986) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{complexity}\vert restricted.\)

    MathSciNet  MATH  Google Scholar 

  118. D.S Hochbaum, D.B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\)

    MathSciNet  Google Scholar 

  119. M. Hofri, Analysis of Algorithms (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  120. Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being myopic helps, in Proceedings of the 1st European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 726 (Springer, New York, 1993), pp. 224–235. This is the preliminary version of [122]

    Google Scholar 

  121. Z. Ivković, E. Lloyd, Partially dynamic bin packing can be solved within \(1+\epsilon\) in (amortized) polylogarithmic time. Inf. Process. Lett. 63, 45–50 (1997) \(\bullet \ \ pack\vert dynamic\vert PTAS.\)

    Google Scholar 

  122. Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J. Comput. 28, 574–611 (1998) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }.\)

    MATH  Google Scholar 

  123. K. Jansen, S. Öhring, Approximation algorithms for time constrained scheduling. Inf. Comput. 132, 85–108 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\mathit{bound}\vert mutex.\)

    MATH  Google Scholar 

  124. K. Jansen, R. Solis-Oba, An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306, 543–551 (2003) \(\bullet \ \ cover\vert \mathit{off - line}\vert FPTAS.\)

    MathSciNet  MATH  Google Scholar 

  125. D.S. Johnson, Fast allocation algorithms, in Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, New York, 1972, pp. 144–154

    Google Scholar 

  126. D.S. Johnson, Near-Optimal Bin Packing Algorithms. PhD thesis, MIT, Cambridge, MA, 1973

    Google Scholar 

  127. D.S. Johnson, Fast algorithms for bin packing. J. Comput. Syst. Sci. 8, 272–314 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    MATH  Google Scholar 

  128. D.S. Johnson, The NP-completeness column: an ongoing guide. J. Algorithms 3, 89–99 (1982)

    MathSciNet  MATH  Google Scholar 

  129. D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3, 256–278 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert s_{i} \leq 1/k.\)

    MathSciNet  Google Scholar 

  130. J. Kang, S. Park, Algorithms for the variable sized bin packing problem. Eur. J. Oper. Res. 147, 365–372 (2003) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MathSciNet  MATH  Google Scholar 

  131. D.R. Karger, S.J. Phillips, E. Torng, A better algorithm for an ancient scheduling problem. J. Algorithms 20, 400–430 (1996) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\)

    MathSciNet  MATH  Google Scholar 

  132. N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-packing problem, in Proceedings of the 23rd Annual IEEE Symposium on Foundations Computer Science, Chicago, IL, 1982, pp. 312–320 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS.\)

    Google Scholar 

  133. G.Y. Katona, Edge disjoint polyp packing. Discret. Appl. Math. 78, 133–152 (1997) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bounds}.\)

    MathSciNet  MATH  Google Scholar 

  134. H. Kellerer, A polynomial time approximation scheme for the multiple knapsack problem, in RANDOM-APPROX, Berkeley, CA. Lecture Notes in Computer Science, vol. 1671 (Springer, 1999), pp. 51–62

    Google Scholar 

  135. H. Kellerer, U. Pferschy, Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert card(B) \leq k.\)

    MathSciNet  MATH  Google Scholar 

  136. C. Kenyon, Best-fit bin-packing with random order, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms Atlanta, GA (ACM/SIAM, Philadelphia, 1996), pp. 359–364 \(\bullet \ \ pack\vert \mathit{on - line}.\)

    Google Scholar 

  137. K.A. Kierstead, W.T. Trotter, An extremal problem in recursive combinatorics. Congr. Numer. 33, 143–153 (1981)

    MathSciNet  Google Scholar 

  138. N.G. Kinnersley, M.A. Langston, Online variable-sized bin packing. Discret. Appl. Math. 22, 143–148 (1988–1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MathSciNet  Google Scholar 

  139. K.L. Krause, Y.Y. Shen, H.D. Schwetman, Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. J. ACM 22, 522–550 (1975) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert card(B) \leq k.\)

    MathSciNet  MATH  Google Scholar 

  140. M.A. Langston, Improved 0/1 interchanged scheduling. BIT 22, 282–290 (1982) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MATH  Google Scholar 

  141. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and scheduling: algorithms and complexity, in Logistics of Production and Inventory, ed. by S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin. Handbooks in Operations Research and Management Science, vol. 4 (North-Holland, Amsterdam, 1993), pp. 445–522

    Google Scholar 

  142. C.C. Lee, D.T. Lee, A new algorithm for on-line bin-packing. Technical report 83-03-FC-02, Department of Electrical Engineering and computer Science Northwestern University, Evanston, IL, 1983

    Google Scholar 

  143. C.C. Lee, D.T. Lee, A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    MATH  Google Scholar 

  144. H.W. Lenstra Jr., Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Google Scholar 

  145. J.Y.-T. Leung, M. Dror, G.H. Young, A note on an open-end bin packing problem. J. Sched. 4, 201–207 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }\mathit{bound};FPTAS.\)

    MathSciNet  MATH  Google Scholar 

  146. R. Li, M. Yue, The proof of \(FFD(L) \leq 11/9\ {\it \text{OPT}}(L) + 7/9.\) Chin. Sci. Bull. 42, 1262–1265 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    Google Scholar 

  147. F.M. Liang, A lower bound for on-line bin packing. Inf. Process. Lett. 10, 76–79 (1980) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    Google Scholar 

  148. W.-P. Liu, J.B. Sidney, Bin packing using semi-ordinal data. Oper. Res. Lett. 19, 101–104 (1996) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  149. L. Lovász, M. Saks, W.T. Trotter, An on-line graph-coloring algorithm with sublinear performance ratio. Discret. Math. 75, 319–325 (1989)

    MATH  Google Scholar 

  150. C.A. Mandal, P.P. Chakrabarti, S. Ghose, Complexity of fragmentable object bin packing and an application. Comput. Math. Appl. 35, 91–97 (1998) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  151. R.L. Manyem, P. Salt, M.S. Visser, Approximation lower bounds in online lib bin packing and covering. J. Autom. Lang. Comb. 8, 663–674 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  152. W. Mao, Best-k-fit bin packing. Computing 50, 265–270 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  153. W. Mao, Tight worst-case performance bounds for next-k-fit bin packing. SIAM J. Comput. 22, 46–56 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)

    MathSciNet  Google Scholar 

  154. C.U. Martel, A linear time bin-packing algorithm. Oper. Res. Lett. 4, 189–192 (1985) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  155. N. Menakerman, R. Rom, Bin packing with item fragmentation, in WADS, Providence, RI. Lecture Notes in Computer Science, vol. 2125 (Springer, 2001), pp. 313–324 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\)

    Google Scholar 

  156. F.D. Murgolo, Anomalous behaviour in bin packing algorithms. Discrte. Appl. Math. 21, 229–243 (1988) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},conservative.\)

    MathSciNet  MATH  Google Scholar 

  157. F.D. Murgolo, An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput. 16, 149–161 (1988) \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert \{B_{i}\}.\)

    MathSciNet  Google Scholar 

  158. N. Naaman, R. Rom, Packet scheduling with fragmentation, in INFOCOM 2002, New York, NY (IEEE, 2002) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\)

    Google Scholar 

  159. P. Ramanan, D.J. Brown, C.C. Lee, D.T. Lee, On-line bin packing in linear time. J. Algorithms 10, 305–326 (1989) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  160. M.B. Richey, Improved bounds for harmonic-based bin packing algorithms. Discret. Appl. Math. 34, 203–227 (1991) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  161. S. Sahni, Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)

    MathSciNet  MATH  Google Scholar 

  162. S.S. Seiden, An optimal online algorithm for bounded space variable-sized bin packing. SIAM J. Discret. Math. 14, 458–470 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\)

    MathSciNet  MATH  Google Scholar 

  163. S.S. Seiden, On the online bin packing problem. J. ACM 49, 640–671 (2002) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\)

    MathSciNet  Google Scholar 

  164. S.S. Seiden, R. van Stee, L. Epstein, New bounds for variable-sized online bin packing. SIAM J. Comput. 33, 455–469 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\)

    MathSciNet  Google Scholar 

  165. H. Shachnai, T. Tamir, Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4, 313–338 (2001) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert card(B) \leq k\mathit{colors}.\)

    MathSciNet  MATH  Google Scholar 

  166. H. Shachnai, T. Tamir, Tight bounds for online class-constrained packing. Theor. Comput. Sci. 321, 103–123 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert card(B) \leq k\mathit{colors}.\)

    MathSciNet  MATH  Google Scholar 

  167. H. Shachnai, O. Yehezkely, Fast asymptotic FPTAS for packing fragmentable items with costs, in FCT, Budapest, Hungary. Lecture Notes in Computer Science, vol. 4639 (Springer, 2007), pp. 482–493 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert controllable.\)

    Google Scholar 

  168. H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43, 81–98 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\)

    MathSciNet  MATH  Google Scholar 

  169. D. Simchi-Levi, New worst-case results for the bin packing problem. Nav. Res. Logist. Q. 41, 579–585 (1994) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\)

    MathSciNet  MATH  Google Scholar 

  170. J. Sylvester, On a point in the theory of vulgar fractions. Am. J. Math. 3, 332–335 (1880)

    MathSciNet  Google Scholar 

  171. A. van Vliet, An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43, 277–284 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    MATH  Google Scholar 

  172. A. van Vliet, Lower and Upper Bounds for On-Line Bin Packing and Scheduling Heuristic. PhD thesis, Erasmus University, Rotterdam, 1995

    Google Scholar 

  173. A. van Vliet, On the asymptotic worst case behavoir of harmonic fit. J. Algorithms 20, 113–136 (1996) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  174. T.S. Wee, M.J. Magazine, Assembly line balancing as generalized bin packing. Oper. Res. Lett. 1, 56–58 (1982) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    MATH  Google Scholar 

  175. G.J. Woeginger, Improved space for bounded-space, on-line bin-packing. SIAM J. Discret. Math. 6, 575–581 (1993) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }.\)

    MathSciNet  MATH  Google Scholar 

  176. E.C. Xavier, F.K. Miyazawa, The class constrained bin packing problem with applications to video-on-demand. Theor. Comput. Sci. 393, 240–259 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },PTAS\vert card(B) \leq k.\)

    MathSciNet  MATH  Google Scholar 

  177. J. Xie, Z. Liu, New worst-case bound of first-fit heuristic for bin packing problem, Unpublished manuscript. \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\)

    Google Scholar 

  178. K. Xu, A Bin-Packing Problem with Item Sizes in the Interval \((0,\alpha ]\) for \(\alpha \leq \frac{1} {2}.\) PhD thesis, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, 1993

    Google Scholar 

  179. K. Xu, The asymptotic worst-case behavior of the FFD heuristics for small items. J. Algorithms 37, 237–246 (2000) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\)

    MathSciNet  MATH  Google Scholar 

  180. A.C.-C. Yao, New algorithms for bin packing. J. ACM 27, 207–227 (1980) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\)

    MATH  Google Scholar 

  181. G. Yu, G. Zhang, Bin packing of selfish items, in WINE 2008, Shanghai, China. Lecture Notes in Computer Science, vol. 5385 (Springer, 2008) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\)

    Google Scholar 

  182. M. Yue, On the exact upper bound for the multifit processor scheduling algorithm. Ann. Oper. Res. 24, 233–259 (1991) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\)

    Google Scholar 

  183. M. Yue, A simple proof of the inequality \(FFD(L) \leq \frac{11} {9} {\it \text{OPT}}(L) + 1\forall L\) for the FFD bin packing algorithm. Acta Math. Appl. Sin. 7, 321–331 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\)

    Google Scholar 

  184. G. Zhang, Tight worst-case performance bound for \(AFB_{k}\) bin packing. Technical report 15, Institute of Applied Mathematics. Academia Sinica, Beijng, China, 1994. This is the preliminary version of [187]

    Google Scholar 

  185. G. Zhang, Worst-case analysis of the FFH algorithm for on-line variable-sized bin paking. Computing 56, 165–172 (1996) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MathSciNet  MATH  Google Scholar 

  186. G. Zhang, A new version of on-line variable-sized bin packing. Discret. Appl. Math. 72, 193–197 (1997) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\)

    MATH  Google Scholar 

  187. G. Zhang, M. Yue, Tight performance bound for \(AFB_{k}\) bin packing. Acta Math. Appl. Sin. Engl. Ser. 13, 443–446 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\)

    Google Scholar 

  188. G. Zhang, X. Cai, C.K. Wong, Linear time-approximation algorithms for bin packing. Oper. Res. Lett. 26, 217–222 (2000) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by Project “TÁMOP-4.2.1/B-09/1/KONV-2010-0005 - Creating the Center of Excellence at the University of Szeged,” supported by the European Union and cofinanced by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward G. Coffman Jr. , János Csirik , Gábor Galambos , Silvano Martello or Daniele Vigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D. (2013). Bin Packing Approximation Algorithms: Survey and Classification. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_35

Download citation

Publish with us

Policies and ethics