Skip to main content

Vitamins Deficiencies and Brain Function

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

Abstract

The consequences of malnutrition on the central nervous system are diverse and depend to a significant extent on the stage of development or maturity of the brain as well as on the severity of the nutritional deficiency. For example, vitamin deficiencies result in a wide range of neuropathology and neuropsychiatric symptomatology depending upon the nature and extent of the vitamin deficiency. The most common vitamin deficiency disorders are those associated with the group B vitamins, particularly thiamine (vitamin B1). The likelihood of multiple vitamin deficiencies should be borne in mind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agamanolis DP, Victor M, Harris JW, Hines JD, Chester EM, Kark JA (1978) An ultrastructural study of subacute combined degeneration of the spinal cord in vitamin B12-deficient rhesus monkeys. J Neuropathol Exp Neurol 37(3):273–299

    Article  PubMed  CAS  Google Scholar 

  2. Aikawa H, Watanabe IS, Furuse T, Iwasaki Y, Satoyoshi E, Sumi T, Moroji T (1984) Low energy levels in thiamine-deficient encephalopathy. J Neuropathol Exp Neurol 43(3):276–287

    Article  PubMed  CAS  Google Scholar 

  3. Albers DS, Augood SJ, Park LC, Browne SE, Martin DM, Adamson J, Hutton M, Standaert DG, Vonsattel JP, Gibson GE, Beal MF (2000) Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment. J Neurochem 74(2):878–881

    Article  PubMed  CAS  Google Scholar 

  4. Bates CJ, Mansoor MA, van der Pols J, Prentice A, Cole TJ, Finch S (1997) Plasma total homocysteine in a representative sample of 972 British men and women aged 65 and over. Eur J Clin Nutr 51(10):691–697

    Article  PubMed  CAS  Google Scholar 

  5. Beauchesne E, Desjardins P, Hazell AS, Butterworth RF (2009) eNOS gene deletion restores blood-brain barrier integrity and attenuates neurodegeneration in the thiamine-deficient mouse brain. J Neurochem 111:452–459

    Article  PubMed  CAS  Google Scholar 

  6. Bémeur C, Ste-Marie L, Desjardins P, Vachon L, Butterworth RF, Hazell AS, Montgomery J (2005) Dehydroascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 46(5):399–407

    Article  PubMed  Google Scholar 

  7. Bernstein AL (1990) Vitamin B6 in clinical neurology. Ann N Y Acad Sci 585:250–260

    Article  PubMed  CAS  Google Scholar 

  8. Bettendorff L (1994) Thiamine in excitable tissues: reflections on a non-cofactor role. Metab Brain Dis 9(3):183–210

    Article  Google Scholar 

  9. Briddon A (2003) Homocysteine in the context of cobalamin metabolism and deficiency states. Amino Acids 24(1–2):1–12

    PubMed  CAS  Google Scholar 

  10. Burk RF, Christensen JM, Maguire MJ, Austin LM, Whetsell WO Jr, May JM, Hill KE, Ebner FF (2006) A Combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs. J Nutr 136(6):1576–1581

    PubMed  CAS  Google Scholar 

  11. Butterworth RF (2006) Metabolic Encephalopathies. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry, 7th edn. Elsevier, London, pp 593–602

    Google Scholar 

  12. Butterworth RF, Besnard AM (1990) Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab Brain Dis 5(4):179–184

    Article  PubMed  CAS  Google Scholar 

  13. Butterworth RF, Gaudreau C, Vincelette J, Bourgault AM, Lamothe F, Nutini AM (1991) Thiamine deficiency and Wernicke’s encephalopathy in AIDS. Metab Brain Dis 6(4):207–212

    Article  PubMed  CAS  Google Scholar 

  14. Butterworth RF, Héroux M (1989) Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. J Neurochem 52(4):1079–1084

    Article  PubMed  CAS  Google Scholar 

  15. Butterworth RF, Kril JJ, Harper CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin and Exp Res 17(5):1084–1088

    Article  CAS  Google Scholar 

  16. Calingasan NY, Baker H, Sheu KF, Gibson GE (1995) Blood-brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Exp Neurol 134(1):64–72

    Article  PubMed  CAS  Google Scholar 

  17. Calingasan NY, Park LC, Calo LL, Trifiletti RR, Gandy SE, Gibson GE (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 153(2):599–610

    Article  PubMed  CAS  Google Scholar 

  18. Carmel R (2005) Cobalamin (Vitamin B12). In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease, 10th edn. Lippincott William & Wilkins, New York, NY, pp 482–497

    Google Scholar 

  19. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80(1):91–100

    Article  PubMed  CAS  Google Scholar 

  20. Castagné V, Rougemont M, Cuenod M, Do KQ (2004) Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat’s development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol Dis 15(1):93–105

    Article  PubMed  Google Scholar 

  21. Chang SJ, Kirksey A, Morré DM (1981) Effects of vitamin B6 deficiency on morphological changes in dendritic trees of Purkinje cells in developing cerebellum of rats. J Nutr 111(5):848–857

    CAS  Google Scholar 

  22. Chang CY, Chen JY, Ke D, Hu ML (2005) Plasma levels of lipophilic antioxidant vitamins in acute ischemic stroke patients: correlation to inflammation markers and neurological deficits. Nutrition 21(10):987–993

    Article  PubMed  CAS  Google Scholar 

  23. Charlton KE, Rabinowitz TL, Geffen LN, Dhansay MA (2004) Lowered plasma vitamin C, but not vitamin E, concentrations in dementia patients. J Nutr Health Aging 8(2):99–107

    PubMed  CAS  Google Scholar 

  24. Charness ME, DeLaPaz RL (1987) Mamillary body atrophy in Wernicke’s encephalopathy: antemortem identification using magnetic resonance imaging. Ann Neurol 22(5):595–600

    Article  PubMed  CAS  Google Scholar 

  25. Cherubini A, Polidori MC, Bregnocchi M, Pezzuto S, Cecchetti R, Ingegni T, Di Iorio A, Senin U, Mecocci P (2000) Antioxidant profile and early outcome in stroke patients. Stroke 31(10):2295–2300

    Article  PubMed  CAS  Google Scholar 

  26. Cooper JR, Pincus JH (1979) The role of thiamine in nervous tissue. Neurochem Res 4(2):223–239

    Article  PubMed  CAS  Google Scholar 

  27. Cuddihy SL, Musiek ES, Morrow JD, Dugan LL (2004) Long-term vitamin E deficiency in mice decreases superoxide radical production in brain. Ann N Y Acad Sci 1031:428–431

    Article  PubMed  CAS  Google Scholar 

  28. Dakshinamurti K, Paulose CS, Viswanathan M, Siow YL, Sharma SK, Bolster B (1990) Neurobiology of pyridoxine. Ann N Y Acad Sci 585:128–144

    Article  PubMed  CAS  Google Scholar 

  29. Delwing D, Tagliari B, Chiarani F, Wannmacher CMD, Wajner M, Wyse AT (2006) Alpha-tocopherol and ascorbic acid administration prevents the impairment of brain energy metabolism of hyperargininemic rats. Cell Mol Neurobiol 26(2):177–189

    Article  CAS  Google Scholar 

  30. Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56(1458):650–651

    Article  PubMed  CAS  Google Scholar 

  31. Faria RR, Abílio VC, Grassl C, Chinen CC, Negrão LT, de Castro JP, Fukushiro DF, Rodrigues MS, Gomes PH, Registro S, de Carvalho RdeC, D’Almeida V, Silva RH, Ribeiro RdeA, Frussa-Filho R (2005) Beneficial effects of vitamin C and vitamin E on reserpine-induced oral dyskinesia in rats: critical role of striatal catalase activity. Neuropharmacology 48(7):993–1001

    Article  PubMed  CAS  Google Scholar 

  32. Frank B, Gupta S (2005) A review of antioxidants and Alzheimer’s disease. Ann Clin Psychiatry 17(4):269–286

    Article  PubMed  Google Scholar 

  33. Fukushima T, Ohta M, Tanaka K, Kaneko S-Y, Maeda T, Sasaki A (2004) Niacin metabolism and Parkinson’s disease. Asia Pac J Clin Nutr 13(Suppl):S176

    Google Scholar 

  34. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377(6546):232–236

    Article  PubMed  CAS  Google Scholar 

  35. Gerster H (1996) The importance of vitamin B6 for development of the infant. Human medical and animal Experimental studies. Z Ernahrungswiss 35(4):309–317

    Article  PubMed  CAS  Google Scholar 

  36. Gibson GE, Blass JP (1985) Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment. Neurochem Res 10(4):453–467

    Article  PubMed  CAS  Google Scholar 

  37. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840

    PubMed  CAS  Google Scholar 

  38. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40(6):493–504

    Article  PubMed  CAS  Google Scholar 

  39. Gospe SM Jr, Hecht ST (1998) Longitudinal MRI findings in pyridoxine-dependent seizures. Neurology 51(1):74–78

    PubMed  Google Scholar 

  40. Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16(6):673–679

    Article  PubMed  CAS  Google Scholar 

  41. Harata N, Iwasaki Y (1995) Evidence for early blood-brain barrier breakdown in experimental thiamine deficiency in the mouse. Metab Brain Dis 10(2):159–174

    Article  PubMed  CAS  Google Scholar 

  42. Harper CG (1983) The incidence of Wernicke’s encephalopathy in Australia. A neuropathological study of 131 cases. J Neurol Neurosurg Psychiatry 46:593–598

    Article  PubMed  CAS  Google Scholar 

  43. Harper CG, Butterworth RF (1997) Nutritional and metabolic disorders. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, London, pp 601–655

    Google Scholar 

  44. Hayton SM, Kriss T, Wase A, Muller DP (2006) Effects on neural function of repleting vitamin E-deficient rats with alpha-tocopherol. J Neurophysiol 95(4):2553–2559

    Article  PubMed  CAS  Google Scholar 

  45. Hayton SM, Muller DP (2004) Vitamin E in neural and visual function. Ann N Y Acad Sci 1031:263–270

    Article  PubMed  CAS  Google Scholar 

  46. Hazell AS, Butterworth RF, Hakim AM (1993) Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem 61(3):1155–1158

    Article  PubMed  CAS  Google Scholar 

  47. Hazell AS, Rao KV, Danbolt NC, Pow DV, Butterworth RF (2001) Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J Neurochem 78(3):560–568

    Article  PubMed  CAS  Google Scholar 

  48. Helmer C, Peuchant E, Letenneur L, Bourdel-Marchasson I, Larrieu S, Dartigues JF, Dubourg L, Thomas MJ, Barberger-Gateau P (2003) Association between antioxidant nutritional indicators and the incidence of dementia: results form the PAQUID prospective cohort study. Eur J Clin Nutr 57(12):1555–1561

    Article  PubMed  CAS  Google Scholar 

  49. Hirono H, Wada Y (1978) Effects of dietary folate deficiency on developmental increase of myelin lipids in rat brain. J Nutr 108(5):766–772

    PubMed  CAS  Google Scholar 

  50. Hyland S, Muller D, Hayton S, Stoecklin E, Barella L (2006) Cortical gene expression in the vitamin E-deficient rat: possible mechanisms for the electrophysiological abnormalities of visual and neural function. Ann Nutr Metab 50(5):433–441

    Article  PubMed  CAS  Google Scholar 

  51. Héroux M, Raghavendra Rao VL, Lavoie J, Richardson JS, Butterworth RF (1996) Alterations of thiamine phosphorylation and of thiamine-dependent enzymes in Alzheimer’s disease. Metab Brain Dis 11(1):81–88

    Article  PubMed  Google Scholar 

  52. Jolitha AB, Subramanyam MV, Asha Devi S (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Gerontol 41(8):753–763

    Article  PubMed  CAS  Google Scholar 

  53. Kruse M, Navarro D, Desjardins P, Butterworth RF (2004) Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem Int 45(1):49–56

    Article  PubMed  CAS  Google Scholar 

  54. Laforenza U, Patrini C, Rindi G (1988) Distribution of thiamine, thiamine phosphates, and thiamine metabolizing enzymes in neuronal and glial cell enriched fractions of rat brain. J Neurochem 51(3):730–735

    Article  PubMed  CAS  Google Scholar 

  55. Langlais PJ, Anderson G, Guo SX, Bondy SC (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12(2):137–143

    PubMed  CAS  Google Scholar 

  56. Langlais PJ, Mair RG (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci 10(5):1664–1674

    PubMed  CAS  Google Scholar 

  57. Leppälä JM, Virtamo J, Fogelholm R, Albanes D, Heinonen OP (1999) Different risk factors for different stroke subtypes: association of blood pressure, cholesterol, and antioxidants. Stroke 30(12):2535–2540

    Article  PubMed  Google Scholar 

  58. Mack WJ, Mocco J, Ducruet AF, Laufer I, King RG, Zhang Y, Guo W, Pinsky DJ, Connolly ES Jr (2006) A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is correlated with increased cerebral ascorbic acid and inhibited lipid peroxidation after murine reperfused stroke. Neurosurgery 59(2):383–388

    Article  PubMed  Google Scholar 

  59. Mariotti C, Gellera C, Rimoldi M, Mineri R, Uziel G, Zorzi G, Pareyson D, Piccolo G, Gambi D, Piacentini S, Squitieri R, Capra R, Castellotti B, Di Donato S (2004) Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 25(3):130–137

    Article  PubMed  CAS  Google Scholar 

  60. Martinasevic MK, Rios GR, Miller MW, Tephly TR (1999) Folate and folate-dependent enzymes associated with rat CNS development. Dev Neurosci 21(1):29–35

    Article  PubMed  CAS  Google Scholar 

  61. Martínez-Cruz F, Osuna C, Guerrero JM (2006) Mitochondrial damage induced by fetal hyperphenylalaninemia in the rat brain and liver: its prevention by melatonin, Vitamin E, and Vitamin C. Neurosci Lett 392(1–2):1–4

    Article  PubMed  Google Scholar 

  62. Marzouki N, Benomar A, Yahyaoui M, Birouk N, Elouazzani M, Chkili T, Benlemlih M (2005) Vitamin E deficieny ataxia with (744 del A) mutation on alpha-TTP gene: genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 48(1):21–28

    Article  PubMed  Google Scholar 

  63. Mas E, Dupuy AM, Artero S, Portet F, Cristol JP, Ritchie K, Touchon J (2006) Functional vitamin E deficiency in ApoE4 patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 21(3):198–204

    Article  PubMed  CAS  Google Scholar 

  64. Miller JW (2002) Vitamin B12 deficiency, tumor necrosis factor-alpha, and epidermal growth factor: a novel function for vitamin B12? Nutr Rev 60(5):142–144

    Article  PubMed  Google Scholar 

  65. Miura S, Ishida A, Nakajima W, Ohmura A, Kawamura M, Takada G (2006) Intraventricular ascorbic acid administrations decreases hypoxic-ischemic brain injury in newborn rats. Brain Res 1095(1):159–166

    Article  PubMed  CAS  Google Scholar 

  66. Mizuno Y, Matuda S, Yoshino H, Mori H, Hattori N, Ikebe S (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35(2):204–210

    Article  PubMed  CAS  Google Scholar 

  67. MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: result of the Medical Research Council Vitamin Study. Lancet 338(8760):131–137

    Article  Google Scholar 

  68. Muthuvel R, Venkataraman P, Krishnamoorthy G, Gunadharini DN, Kanagaraj P, Jone Stanley A, Srinivasan N, Balasubramanian K, Aruldhas MM, Arunakaran J (2006) Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of rats. Clin Chim Acta 365(1–2):297–303

    Article  PubMed  CAS  Google Scholar 

  69. Navarro D, Zwingmann C, Hazell AS, Butterworth RF (2005) Brain lactate synthesis in thiamine deficiency: a re-evaluation using 1H/13C nuclear magnetic resonance spectroscopy. J Neurosci Res 79(1–2):33–41

    Article  PubMed  CAS  Google Scholar 

  70. Newaz MA, Yousefipour Z, Nawa NN (2005) Modulation of nitric oxide synthase activity in brain, liver, and blood vessels of spontaneously hypertensive rats by ascorbic acid: protection from free radical injury. Clin Exp Hypertens 27(6):497–508

    Article  PubMed  CAS  Google Scholar 

  71. Nunn JF, Chanarin I, Tanner AG, Owen ER (1986) Megaloblastic bone marrow changes after repeated nitrous oxide anaesthesia. Reversal with folinic acid. Br J Anaesth 58(12):1469–1470

    Article  PubMed  CAS  Google Scholar 

  72. Parker WD Jr, Hass R, Stumpf DA, Parks J, Eguren LA, Jackson C (1984) Brain mitochondrial metabolism in experimental thiamine deficiency. Neurology 34(11):1477–1481

    PubMed  CAS  Google Scholar 

  73. Peters RA (1936) The biochemical lesion in vitamin B1 deficiency. application of modern biochemical analysis in its diagnosis. Lancet 1:1161–1164

    Article  Google Scholar 

  74. Puri V, Chaudhry N, Tatke M, Prakash V (2005) Isolated vitamin E deficiency with demyelinating neuropathy. Muscle Nerve 32(2):230–235

    Article  PubMed  Google Scholar 

  75. Rao VL, Richardson JS, Butterworth RF (1993) Decreased activities of thiamine diphosphatase in frontal and temporal cortex in Alzheimer’s disease. Brain Res 631(2):334–336

    Article  PubMed  CAS  Google Scholar 

  76. Rebec GV, Conroy SK, Barton SJ (2006) Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 137(1):327–336

    Article  PubMed  CAS  Google Scholar 

  77. Rebec GV, Witowski SR, Sandstrom MI, Rostand RD, Kennedy RT (2005) Extracellular ascorbate modulates cortically evoked glutamate dynamics in rat striatum. Neurosci Lett 378(3):166–170

    Article  PubMed  CAS  Google Scholar 

  78. Rota C, Rimbach G, Minihane AM, Stoecklin E, Barella L (2005) Dietary vitamin E modulates differential gene expression in the rat hippocampus: potential implications for its neuroprotective properties. Nutr Neurosci 8(1):21–29

    Article  PubMed  CAS  Google Scholar 

  79. Sakai K, Nakajima T, Fukuhara N (2006) A suspected of alcoholic pellagra encephalopathy with marked response to niacin showing myoclonus and ataxia as chief complaints. No To Shinkei 58(2):141–144

    PubMed  Google Scholar 

  80. Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A (2004) Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke 35:163–168

    Article  PubMed  CAS  Google Scholar 

  81. Scalabrino G (2005) Cobalamin (vitamin B12) in subacute combined degeneration and beyond tradional interpretations and novel theories. Exp Neurol 192(2):463–479

    Article  PubMed  CAS  Google Scholar 

  82. Scalabrino G, Buccellato FR, Veber D, Mutti E (2003) New basis of the neurotrophic action of vitamin B12. Clin Chem Lab Med 41(11):1435–1437

    Article  PubMed  CAS  Google Scholar 

  83. Shih JJ, Kornblum H, Shewmon DA (1996) Global brain dysfunction in an infant with pyridoxine dependency: evaluation with EEG, evoked potentials, MRI, and PET. Neurology 47(3):824–826

    PubMed  CAS  Google Scholar 

  84. Sies H (1985) Oxidative stress: introductory remarks.In: Sies H (eds) Oxidative stress. Academic Press, Orlando, pp 1–8

    Google Scholar 

  85. TanPhaichitr V (1985) Epidemiology and clinical assessment of vitamin deficiencies in Thai children. In: Eeckels RE, Ransome-Kuti O, Kroonenberg CC (eds) Child health in the tropics. Martinus Nijhoff Publishers, Dordrecht, pp 157–166

    Google Scholar 

  86. TanPhaichitr V (1999) Thiamin. In: Shils ME, Olsen JA, Shike M et al (eds) Modern nutrition in health and disease, 9th edn. Lippincott Williams & Wilkins, Baltimore, MD

    Google Scholar 

  87. Todd KG, Butterworth RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25(2):190–198

    Article  PubMed  CAS  Google Scholar 

  88. Torvik A (1985) Two types of brain lesions in Wernicke’s encephalopathy. Neuropathol Appl Neurobiol 11(3):179–190

    Article  PubMed  CAS  Google Scholar 

  89. Traber MG (2006) How much vitamin E... Just enough! Am J Clin Nutr 84(5):959–960

    PubMed  CAS  Google Scholar 

  90. Victor M, Adams RD, Collins GH (1971) The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp Neurol Ser 7:1–206

    PubMed  CAS  Google Scholar 

  91. Werler MM, Shapiro S, Mitchell AA (1993) Periconceptional folic acid exposure and risk of occurrent neural tube defects. JAMA 269(10):1257–1261

    Article  PubMed  CAS  Google Scholar 

  92. Xu Y, Sladky JT, Brown MJ (1989) Dose-dependent expression of neuronopathy after experimental pyridoxine intoxication. Neurology 39(8):1077–1083

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Butterworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bémeur, C., Montgomery, J.A., Butterworth, R.F. (2011). Vitamins Deficiencies and Brain Function. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_4

Download citation

Publish with us

Policies and ethics