Skip to main content

Histopathology Tissue Segmentation by Combining Fuzzy Clustering with Multiphase Vector Level Sets

  • Chapter
  • First Online:
Software Tools and Algorithms for Biological Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

High resolution, multispectral, and multimodal imagery of tissue biopsies is an indispensable source of information for diagnosis and prognosis of diseases. Automatic extraction of relevant features from these imagery is a valuable assistance for medical experts. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other structures such as lumen and epithelial regions which together make up a gland structure. This chapter presents an automatic segmentation system for histopathology imaging. Spatial constraint fuzzy C-means provides an unsupervised initialization. An active contour algorithm that combines multispectral edge and region informations through a vector multiphase level set framework and Beltrami color metric tensors refines the segmentation. An improved iterative kernel filtering approach detects individual nuclei centers and decomposes densely clustered nuclei structures. The obtained results show high performances for nuclei detection compared to the human annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Histopathology imagery provided by Michael Feldman (Department of Surgical Pathology, University of Pennsylvania) and ground truth from Anant Madabhushi (Rutgers).

References

  1. Stotzka, R., Manner, R., Bartels, P., Thompson, D.: A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. Analytical and Quantitative Cytology and Histology 17(3) (1995) 204–218

    PubMed  CAS  Google Scholar 

  2. Wetzel, A.: Computational aspects of pathology image classification and retrieval. The Journal of Supercomputing 11(3) (1997) 279–293

    Article  Google Scholar 

  3. Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., Tomaszeweski, J.: Automated grading of prostate cancer using architectural and textural image features. In: IEEE International Symposium Biomedical Imaging: From Nano to Macro ISBI 2007. (April 2007) 1284–1287

    Google Scholar 

  4. Wittke, C., Mayer, J., Schweiggert, F.: On the classification of prostate carcinoma with methods from spatial statistics. IEEE Transactions on Information Technology in Biomedicine 11(4) (2007) 406–414

    Article  PubMed  Google Scholar 

  5. Tabesh, A., Teverovskiy, M., Pang, H., Kumar, V., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Transactions on Medical Imaging 26(10) (2007) 1366–1378

    Article  PubMed  Google Scholar 

  6. Yang, L., Tuzel, O., Chen, W., Meer, P., Salaru, G., Goodell, L., Foran, D.: PathMiner: A Web-Based tool for Computer-Assisted diagnostics in pathology. IEEE Transactions on Information Technology in Biomedicine 13(3) (2009) 291–299

    Article  PubMed  Google Scholar 

  7. Huang, P., Lee, C.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Transactions on Medical Imaging 28(7) (2009) 1037–1050

    Article  PubMed  Google Scholar 

  8. Tosun, A.B., Kandemir, M., Sokmensuer, C., Gunduz-Demir, C.: Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recognition 42(6) (2009) 1104–1112

    Article  Google Scholar 

  9. Sertel, O., Kong, J., Catalyurek, U., Lozanski, G., Saltz, J., Gurcan, M.: Histopathological image analysis using Model-Based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing Systems 55(1) (April 2009) 169–183

    Article  Google Scholar 

  10. Hafiane, A., Bunyak, F., Palaniappan, K.: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. Lecture Notes in Computer Science (ACIVS) 5259 (2008) 903–914

    Article  Google Scholar 

  11. Hafiane, A., Bunyak, F., Palaniappan, K.: Evaluation of level set-based histology image segmentation using geometric region criteria. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA (Aug. 2009) 1–4

    Google Scholar 

  12. Hafiane, A., Bunyak, F., Palaniappan, K.: Clustering initiated multiphase active contours and robust separation of nuclei groups for tissue segmentation. In: IEEE International Conference on Pattern Recognition, Tampa, FL (Dec. 2008) 1–4

    Google Scholar 

  13. Hafiane, A., Zavidovique, B., Chaudhuri, S.: A modified fuzzy FCM with Peano scans to image segmentation. In: IEEE International Conference on Image Processing, Genova, Italy (Sept. 2005) 840–843

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulous, D.: Snakes: Active contour models. International Journal of Computer Vision 1 (1988) 321–331

    Article  Google Scholar 

  15. Malladi, R., Sethian, J.A., Vemuri, B.: Shape modelling with front propagation:A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2) (Feb. 1995) 158–174

    Google Scholar 

  16. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1) (1997) 61–79

    Article  Google Scholar 

  17. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge, UK (1999) ISBN 0-521-645573-3

    Google Scholar 

  18. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2) (Feb. 2001) 266–277

    Google Scholar 

  19. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3) (2002) 271–293

    Article  Google Scholar 

  20. Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation 11 (2000) 130–141

    Article  Google Scholar 

  21. Yan, P., Zhou, X., Shah, M., Wong, S.: Automatic segmentation of high-throughput rnai fluorescent cellular images. IEEE Transactions on Information Technology in Biomedicine 12(1) (January 2008) 109–117

    Article  PubMed  CAS  Google Scholar 

  22. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10) (Oct 2001) 1467–1475

    Article  PubMed  CAS  Google Scholar 

  23. Malpica, N., de Solórzano, C., Vaquero, J., Santos, A., Vallcorba, I., Garcia-Sagredo, J., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4) (Aug. 1997) 289–297

    Google Scholar 

  24. Ersoy, I., Palaniappan, K.: Multi-feature contour evolution for automatic live cell segmentation in time lapse imagery. In: IEEE Engineering in Medicine and Biology Society (Aug. 2008) 371–374

    Google Scholar 

  25. Li, G., Liu, T., Nie, J., Guo, L., Malicki, J., Mara, A., Holley, S., Xia, W., Wong, S.: Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A 71(10) (Oct 2007) 835–845

    Article  Google Scholar 

  26. Yang, F., Jiang, T.: Cell image segmentation with kernel-based dynamic clustering and an ellipsoidal cell shape model. Journal of Biomedical Informatics 34(2) (2001) 67–73

    Article  PubMed  CAS  Google Scholar 

  27. Yang, Q., Parvin, B.: Harmonic cut and regularized centroid transform for localization of subcellular structures. IEEE Transactions on Bio-Medical Engineering 50 (2003) 469–475

    Article  PubMed  Google Scholar 

  28. Byun, J., Verardo, M.R., Sumengen, B., Lewis, G.P., Manjunath, B.S., Fisher, S.K.: Automated tool for the detection of cell nuclei in digital microscopic images: Application to retinal images. Molecular Vision 12 (2006) 949–960

    PubMed  CAS  Google Scholar 

  29. Schmitt, O., Hasse, M.: Morphological multiscale decomposition of connected regions with emphasis on cell clusters. Computer Vision and Image Understanding 113(2) (2008) 188–201

    Article  Google Scholar 

  30. Parvin, B., Yang, Q., Han, J., Chang, H., Rydberg, B., Barcellos-Hoff, M.H.: Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Transactions on Image Processing 16(3) (March 2007) 615–623

    Article  PubMed  Google Scholar 

  31. Schmitt, O., Hasse, M.: Radial symmetries based decomposition of cell clusters in binary and gray level images. Pattern Recognition 41 (2008) 1905–1923

    Article  Google Scholar 

  32. Hafiane, A., Chabrier, S., Rosenberger, C., Laurent, H.: A new supervised evaluation criterion for region based segmentation methods. Lecture Notes in Computer Science (ACIVS) 4678 (2007) 439–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Bunyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bunyak, F., Hafiane, A., Palaniappan, K. (2011). Histopathology Tissue Segmentation by Combining Fuzzy Clustering with Multiphase Vector Level Sets. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_41

Download citation

Publish with us

Policies and ethics