Skip to main content

Protein Homeostasis in Models of Aging and Age-Related Conformational Disease

  • Chapter
Protein Metabolism and Homeostasis in Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption of numerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation of proteostasis leads to neurodegenerative diseases of aging.

These authors contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998; 396:336–342.

    Article  CAS  PubMed  Google Scholar 

  2. Stevens FJ, Argon Y. Pathogenic light chains and the B-cell repertoire. Immunol Today 1999; 20:451–457.

    Article  CAS  PubMed  Google Scholar 

  3. Gidalevitz T, Ben-Zvi A, Ho KH et al. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006; 311:1471–1474.

    Article  CAS  PubMed  Google Scholar 

  4. Yeyati PL, Bancewicz RM, Maule J et al. Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 2007; 3:e43.

    Article  PubMed  CAS  Google Scholar 

  5. Michels AA, Kanon B, Konings AW et al. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem 1997; 272:33283–33289.

    Article  CAS  PubMed  Google Scholar 

  6. Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 1993; 27:437–496.

    Article  CAS  PubMed  Google Scholar 

  7. Balch WE, Morimoto RI, Dillin A et al. Adapting proteostasis for disease intervention. Science 2008; 319:916–919.

    Article  CAS  PubMed  Google Scholar 

  8. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11:298–300.

    CAS  PubMed  Google Scholar 

  9. Sohal RS, Weindruch R. Oxidative stress, caloric restriction and aging. Science 1996; 273:59–63.

    Article  CAS  PubMed  Google Scholar 

  10. Berlett BS, Stadtman ER. Protein oxidation in aging, disease and oxidative stress. J Biol Chem 1997; 272:20313–20316.

    Article  CAS  PubMed  Google Scholar 

  11. Stadtman ER, Oliver CN. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 1991; 266:2005–2008.

    CAS  PubMed  Google Scholar 

  12. Smith CD, Carney JM, Starke-Reed PE et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 1991; 88:10540–10543.

    Article  CAS  PubMed  Google Scholar 

  13. Stadtman ER. Protein oxidation and aging. Science 1992; 257:1220–1224.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed N, Dobler D, Dean M et al. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 2005; 280:5724–5732.

    Article  CAS  PubMed  Google Scholar 

  15. Lo TW, Westwood ME, McLellan AC et al. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine and N alpha-acetyllysine and bovine serum albumin. J Biol Chem 1994; 269:32299–32305.

    CAS  PubMed  Google Scholar 

  16. Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 1999; 110:145–175.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhla B, Boeck K, Schmidt A et al. Age-and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 2007; 28:29–41.

    Article  CAS  PubMed  Google Scholar 

  18. Hipkiss AR. On the mechanisms of ageing suppression by dietary restriction-is persistent glycolysis the problem? Mech Ageing Dev 2006; 127:8–15.

    Article  CAS  PubMed  Google Scholar 

  19. Gnerer JP, Kreber RA, Ganetzky B. Wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration and early death. Proc Natl Acad Sci USA 2006; 103:14987–14993.

    Article  CAS  PubMed  Google Scholar 

  20. Moskovitz J. Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival. Curr Pharm Des 2005; 11:1451–1457.

    Article  CAS  PubMed  Google Scholar 

  21. Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 2006; 580:2910–2916.

    Article  CAS  PubMed  Google Scholar 

  22. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 1993; 62:797–821.

    Article  CAS  PubMed  Google Scholar 

  23. Hanson SR, Hasan A, Smith DL et al. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 2000; 71:195–207.

    Article  CAS  PubMed  Google Scholar 

  24. Breusing N, Grune T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 2008; 389:203–209.

    Article  CAS  PubMed  Google Scholar 

  25. Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83:301–310.

    Article  CAS  PubMed  Google Scholar 

  26. Shringarpure R, Grune T, Mehlhase J et al. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 2003; 278:311–318.

    Article  CAS  PubMed  Google Scholar 

  27. Shang F, Nowell TR Jr, Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res 2001; 73:229–238.

    Article  CAS  PubMed  Google Scholar 

  28. Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002; 4:674–680.

    Article  CAS  PubMed  Google Scholar 

  29. Reinheckel T, Grune T, Davies KJ. The measurement of protein degradation in response to oxidative stress. Methods Mol Biol 2000; 99:49–60.

    CAS  PubMed  Google Scholar 

  30. Kiffin R, Christian C, Knecht E et al. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15:4829–4840.

    Article  CAS  PubMed  Google Scholar 

  31. Schultz SC, Richards JH. Site-saturation studies of beta-lactamase: production and characterization of mutant beta-lactamases with all possible amino acid substitutions at residue 71. Proc Natl Acad Sci USA 1986; 83:1588–1592.

    Article  CAS  PubMed  Google Scholar 

  32. Pakula AA, Sauer RT. Genetic analysis of protein stability and function. Annu Rev Genet 1989; 23:289–310.

    Article  CAS  PubMed  Google Scholar 

  33. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 2006; 7:61–80.

    Article  CAS  PubMed  Google Scholar 

  34. DePristo MA, Weinreich DM, Hartl DL. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 2005; 6:678–687.

    Article  CAS  PubMed  Google Scholar 

  35. Suckow J, Markiewicz P, Kleina LG et al. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 1996; 261:509–523.

    Article  CAS  PubMed  Google Scholar 

  36. Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409:928–933.

    Article  CAS  PubMed  Google Scholar 

  37. Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 2008; 134:341–352.

    Article  CAS  PubMed  Google Scholar 

  38. Gidalevitz T, Krupinski T, Garcia S et al. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 2009; 5:e1000399.

    Article  PubMed  CAS  Google Scholar 

  39. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 2003; 81:678–699.

    Article  CAS  PubMed  Google Scholar 

  40. Kopito RR, Ron D. Conformational disease. Nat Cell Biol 2000; 2:E207–209.

    Article  CAS  PubMed  Google Scholar 

  41. Lee JW, Beebe K, Nangle LA et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 2006; 443:50–55.

    Article  CAS  PubMed  Google Scholar 

  42. Jordanova A, Irobi J, Thomas FP et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 2006; 38:197–202.

    Article  CAS  PubMed  Google Scholar 

  43. Martin I, Grotewiel MS. Oxidative damage and age-related functional declines. Mech Ageing Dev 2006; 127:411–423.

    CAS  PubMed  Google Scholar 

  44. Calderwood SK, Murshid A, Prince T. The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging—A Mini-Review. Gerontology 2009.

    Google Scholar 

  45. Holmberg CI, Staniszewski KE, Mensah KN et al. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 2004; 23:4307–4318.

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Nollen EA, Kitagawa K et al. Polyglutamine protein aggregates are dynamic. Nat Cell Biol 2002; 4:826–831.

    Article  CAS  PubMed  Google Scholar 

  47. Suhr ST, Senut MC, Whitelegge JP et al. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 2001; 153:283–294.

    Article  CAS  PubMed  Google Scholar 

  48. Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet 2007; 80:727–739.

    Article  CAS  PubMed  Google Scholar 

  49. Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005; 280:33097–33100.

    Article  CAS  PubMed  Google Scholar 

  50. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8:519–529.

    Article  CAS  PubMed  Google Scholar 

  51. Banerji SS, Theodorakis NG, Morimoto RI. Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol Cell Biol 1984; 4:2437–2448.

    CAS  PubMed  Google Scholar 

  52. Xiao X, Zuo X, Davis AA et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 1999; 18:5943–5952.

    Article  CAS  PubMed  Google Scholar 

  53. Santos SD, Saraiva MJ. Enlarged ventricles, astrogliosis and neurodegeneration in heat shock factor 1 null mouse brain. Neuroscience 2004; 126:657–663.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang P, McGrath B, Li S et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth and the function and viability of the pancreas. Mol Cell Biol 2002; 22:3864–3874.

    Article  CAS  PubMed  Google Scholar 

  55. Reimold AM, Iwakoshi NN, Manis J et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001; 412:300–307.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang K, Wong HN, Song B et al. The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B-cell lymphopoiesis. J Clin Invest 2005; 115:268–281.

    CAS  PubMed  Google Scholar 

  57. Elefant F, Palter KB. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 1999; 10:2101–2117.

    CAS  PubMed  Google Scholar 

  58. Feder JH, Rossi JM, Solomon J et al. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev 1992; 6:1402–1413.

    Article  CAS  PubMed  Google Scholar 

  59. Nylandsted J, Rohde M, Brand K et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 2000; 97:7871–7876.

    Article  CAS  PubMed  Google Scholar 

  60. Whitesell L, Mimnaugh EG, De Costa B et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91:8324–8328.

    Article  CAS  PubMed  Google Scholar 

  61. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5:761–772.

    Article  CAS  PubMed  Google Scholar 

  62. Duyao M, Ambrose C, Myers R et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 1993; 4:387–392.

    Article  CAS  PubMed  Google Scholar 

  63. Morley JF, Brignull HR, Weyers JJ et al. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99:10417–10422.

    Article  PubMed  CAS  Google Scholar 

  64. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996; 382:536–539.bl]References

    Article  CAS  PubMed  Google Scholar 

  65. Lin K, Dorman JB, Rodan A et al. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278:1319–1322.

    Article  CAS  PubMed  Google Scholar 

  66. Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 2004; 15:657–664.

    Article  CAS  PubMed  Google Scholar 

  67. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 2003; 300:1142–1145.

    Article  CAS  PubMed  Google Scholar 

  68. Cohen E, Bieschke J, Perciavalle RM et al. Opposing activities protect against age-onset proteotoxicity. Science 2006; 313:1604–1610.

    Article  CAS  PubMed  Google Scholar 

  69. Lithgow GJ, White TM, Melov S et al. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 1995; 92:7540–7544.

    Article  CAS  PubMed  Google Scholar 

  70. Salmon AB, Sadighi Akha AA, Buffenstein R et al. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 2008; 63:232–241.

    PubMed  Google Scholar 

  71. Salmon AB, Murakami S, Bartke A et al. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 2005; 289:E23–29.

    Article  CAS  PubMed  Google Scholar 

  72. Broughton SJ, Piper MD, Ikeya T et al. Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 2005; 102:3105–3110.

    Article  CAS  PubMed  Google Scholar 

  73. Tullet JM, Hertweck M, An JH et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 2008; 132:1025–1038.

    Article  CAS  PubMed  Google Scholar 

  74. Prahlad V, Cornelius T, Morimoto RI. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 2008; 320:811–814.

    Article  CAS  PubMed  Google Scholar 

  75. Bienz M. Developmental control of the heat shock response in Xenopus. Proc Natl Acad Sci USA 1984; 81:3138–3142.

    Article  CAS  PubMed  Google Scholar 

  76. Sprang GK, Brown IR. Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Brain Res 1987; 427:89–93.

    CAS  PubMed  Google Scholar 

  77. Shamovsky I, Gershon D. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Mech Ageing Dev 2004; 125:767–775.

    Article  CAS  PubMed  Google Scholar 

  78. Mathur SK, Sistonen L, Brown IR et al. Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci USA 1994; 91:8695–8699.

    Article  CAS  PubMed  Google Scholar 

  79. Marcuccilli CJ, Mathur SK, Morimoto RI et al. Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J Neurosci 1996; 16:478–485.

    CAS  PubMed  Google Scholar 

  80. Batulan Z, Shinder GA, Minotti S et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 2003; 23:5789–5798.

    CAS  PubMed  Google Scholar 

  81. Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005; 6:11–22.

    Article  CAS  PubMed  Google Scholar 

  82. Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2003; 2:131–139.

    Article  CAS  PubMed  Google Scholar 

  83. YYokoyama K, Fukumoto K, Murakami T et al. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 2002; 516:53–57.

    Article  Google Scholar 

  84. Herndon LA, Schmeissner PJ, Dudaronek JM et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002; 419:808–814.

    Article  CAS  PubMed  Google Scholar 

  85. Yang J, Tower J. Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci 2009; 64:828–838.

    PubMed  Google Scholar 

  86. Yun C, Stanhill A, Yang Y et al. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci USA 2008; 105:7094–7099.

    Article  CAS  PubMed  Google Scholar 

  87. Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011–2015.

    Article  CAS  PubMed  Google Scholar 

  88. Westerheide SD, Anckar J, Stevens SM et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009; 323:1063–1066.

    Article  CAS  PubMed  Google Scholar 

  89. Lee SS, Kennedy S, Tolonen AC et al. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003; 300:644–647.

    Article  CAS  PubMed  Google Scholar 

  90. Kakizuka A. Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 1998; 14:396–402.

    Article  CAS  PubMed  Google Scholar 

  91. Chiti F, Dobson CM. Protein misfolding, functional amyloid and human disease. Annu Rev Biochem 2006; 75:333–366.

    Article  CAS  PubMed  Google Scholar 

  92. Warrick JM, Paulson HL, Gray-Board GL et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998; 93:939–949.

    Article  CAS  PubMed  Google Scholar 

  93. Faber PW, Alter JR, MacDonald ME et al. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci USA 1999; 96:179–184.

    Article  CAS  PubMed  Google Scholar 

  94. Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature 2000; 404:394–398.

    Article  CAS  PubMed  Google Scholar 

  95. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 2000; 97:1589–1594.

    Article  CAS  PubMed  Google Scholar 

  96. Satyal SH, Schmidt E, Kitagawa K et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 2000; 97:5750–5755.

    Article  CAS  PubMed  Google Scholar 

  97. Parker JA, Connolly JB, Wellington C et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98:13318–13323.

    Article  CAS  PubMed  Google Scholar 

  98. Warrick JM, Chan HY, Gray-Board GL et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 1999; 23:425–428.

    Article  CAS  PubMed  Google Scholar 

  99. Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000; 287:1837–1840.

    Article  CAS  PubMed  Google Scholar 

  100. Nollen EA, Garcia SM, van Haaften G et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 2004; 101:6403–6408.

    Article  CAS  PubMed  Google Scholar 

  101. Garcia SM, Casanueva MO, Silva MC et al. Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans postsynaptic muscle cells. Genes Dev 2007; 21:3006–3016.

    Article  CAS  PubMed  Google Scholar 

  102. Jackson GR, Salecker I, Dong X et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998; 21:633–642.

    Article  CAS  PubMed  Google Scholar 

  103. Brignull HR, Moore FE, Tang SJ et al. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci 2006; 26:7597–7606.

    Article  CAS  PubMed  Google Scholar 

  104. Marsh JL, Walker H, Theisen H et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 2000; 9:13–25.

    Article  CAS  PubMed  Google Scholar 

  105. Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 1995; 92:9368–9372.

    Article  CAS  PubMed  Google Scholar 

  106. Finelli A, Kelkar A, Song HJ et al. A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 2004; 26:365–375.

    Article  CAS  PubMed  Google Scholar 

  107. Wittmann CW, Wszolek MF, Shulman JM et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293:711–714.

    Article  CAS  PubMed  Google Scholar 

  108. Kraemer BC, Zhang B, Leverenz JB et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 2003; 100:9980–9985.

    Article  CAS  PubMed  Google Scholar 

  109. Nussbaum RL, Polymeropoulos MH. Genetics of Parkinson’s disease. Hum Mol Genet 1997; 6:1687–1691.

    Article  CAS  PubMed  Google Scholar 

  110. Chase TN. A gene for Parkinson disease. Arch Neurol 1997; 54:1156–1157.

    CAS  PubMed  Google Scholar 

  111. Lakso M, Vartiainen S, Moilanen AM et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 2003; 86:165–172.

    Article  CAS  PubMed  Google Scholar 

  112. van Ham TJ, Thijssen KL, Breitling R et al. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 2008; 4:e1000027.

    Article  PubMed  CAS  Google Scholar 

  113. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 364:362.

    CAS  PubMed  Google Scholar 

  114. Watson MR, Lagow RD, Xu K et al. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 2008; 283:24972–24981.

    Article  CAS  PubMed  Google Scholar 

  115. Wang J, Farr GW, Hall DH et al. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 2009; 5:e1000350.

    Article  PubMed  CAS  Google Scholar 

  116. Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 2003; 17:516–528.

    Article  CAS  PubMed  Google Scholar 

  117. Hahn JS, Thiele DJ. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 2004; 279:5169–5176.

    Article  CAS  PubMed  Google Scholar 

  118. Thomson S, Hollis A, Hazzalin CA et al. Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Mol Cell 2004; 15:585–594.

    Article  CAS  PubMed  Google Scholar 

  119. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232:522–524.

    Article  CAS  PubMed  Google Scholar 

  120. Hiromi Y, Okamoto H, Gehring WJ et al. Germline transformation with Drosophila mutant actin genes induces constitutive expression of heat shock genes. Cell 1986; 44:293–301.

    Article  CAS  PubMed  Google Scholar 

  121. Parsell DA, Sauer RT. Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 1989; 3:1226–1232.

    Article  CAS  PubMed  Google Scholar 

  122. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22:631–677.

    Article  CAS  PubMed  Google Scholar 

  123. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev 1998; 12:3788–3796.

    Article  CAS  PubMed  Google Scholar 

  124. Morimoto RI, Kline MP, Bimston DN et al. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 1997; 32:17–29.

    CAS  PubMed  Google Scholar 

  125. Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381:571–579.

    Article  CAS  PubMed  Google Scholar 

  126. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92:351–366.

    Article  CAS  PubMed  Google Scholar 

  127. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228:111–133.

    CAS  Google Scholar 

  128. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006; 125:443–451.

    Article  CAS  PubMed  Google Scholar 

  129. Kieran D, Kalmar B, Dick JR et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004; 10:402–405.

    Article  CAS  PubMed  Google Scholar 

  130. Katayama T, Imaizumi K, Honda A et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations. J Biol Chem 2001; 276:43446–43454.

    Article  CAS  PubMed  Google Scholar 

  131. Cowan KJ, Diamond MI, Welch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet 2003; 12:1377–1391.

    Article  CAS  PubMed  Google Scholar 

  132. Hay DG, Sathasivam K, Tobaben S et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 2004; 13:1389–1405.

    Article  CAS  PubMed  Google Scholar 

  133. Zourlidou A, Gidalevitz T, Kristiansen M et al. Hsp27 overexpression in the R6/2 mouse model of Huntington’s disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 2007; 16:1078–1090.

    Article  CAS  PubMed  Google Scholar 

  134. Wen FC, Li YH, Tsai HF et al. Down-regulation of heat shock protein 27 in neuronal cells and nonneuronal cells expressing mutant ataxin-3. FEBS Lett 2003; 546:307–314.

    Article  CAS  PubMed  Google Scholar 

  135. Chai Y, Koppenhafer SL, Bonini NM et al. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 1999; 19:10338–10347.

    CAS  PubMed  Google Scholar 

  136. Stenoien DL, Cummings CJ, Adams HP et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1 and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 1999; 8:731–741.

    Article  CAS  PubMed  Google Scholar 

  137. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292:1552–1555.

    Article  CAS  PubMed  Google Scholar 

  138. Nishitoh H, Matsuzawa A, Tobiume K et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16:1345–1355.

    Article  CAS  PubMed  Google Scholar 

  139. Tatzelt J, Zuo J, Voellmy R et al. Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci USA 1995; 92:2944–2948.

    Article  CAS  PubMed  Google Scholar 

  140. Van Dyk TK, Gatenby AA, LaRossa RA. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 1989; 342:451–453.

    Article  PubMed  Google Scholar 

  141. Brown CR, Hong-Brown LQ, Welch WJ. Correcting temperature-sensitive protein folding defects. J Clin Invest 1997; 99:1432–1444.

    Article  CAS  PubMed  Google Scholar 

  142. Bilen J, Bonini NM. Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 2007; 3:1950–1964.

    Article  CAS  PubMed  Google Scholar 

  143. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 2009.

    Google Scholar 

  144. Fraser AG, Kamath RS, Zipperlen P et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408:325–330.

    Article  CAS  PubMed  Google Scholar 

  145. Kamath RS, Martinez-Campos M, Zipperlen P et al. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2001; 2:RESEARCH0002.

    CAS  PubMed  Google Scholar 

  146. Ghosh S, Feany MB. Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum Mol Genet 2004; 13:2011–2018.

    Article  CAS  PubMed  Google Scholar 

  147. Kitamura A, Kubota H, Pack CG et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 2006; 8:1163–1170.

    Article  CAS  PubMed  Google Scholar 

  148. Behrends C, Langer CA, Boteva R et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 2006; 23:887–897.

    Article  CAS  PubMed  Google Scholar 

  149. Tam S, Geller R, Spiess C et al. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 2006; 8:1155–1162.

    Article  CAS  PubMed  Google Scholar 

  150. Kraemer BC, Burgess JK, Chen JH et al. Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 2006; 15:1483–1496.

    Article  CAS  PubMed  Google Scholar 

  151. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001; 24:1121–1159.

    Article  CAS  PubMed  Google Scholar 

  152. Shulman JM, Feany MB. Genetic modifiers of tauopathy in Drosophila. Genetics 2003; 165:1233–1242.

    CAS  PubMed  Google Scholar 

  153. Auluck PK, Chan HY, Trojanowski JQ et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002; 295:865–868.

    Article  CAS  PubMed  Google Scholar 

  154. Lamitina T, Huang CG, Strange K. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci USA 2006; 103:12173–12178.

    Article  CAS  PubMed  Google Scholar 

  155. Willingham S, Outeiro TF, DeVit MJ et al. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 2003; 302:1769–1772.

    Article  CAS  PubMed  Google Scholar 

  156. Faber PW, Voisine C, King DC et al. Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 2002; 99:17131–17136.

    Article  CAS  PubMed  Google Scholar 

  157. Powers ET, Morimoto RI, Dillin A et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78:959–991.

    Article  CAS  PubMed  Google Scholar 

  158. Westerheide SD, Kawahara TL, Orton K et al. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 2006; 281:9616–9622.

    Article  CAS  PubMed  Google Scholar 

  159. Mathew A, Mathur SK, Morimoto RI. Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 1998; 18:5091–5098.

    CAS  PubMed  Google Scholar 

  160. Rossi A, Elia G, Santoro MG. Activation of the heat shock factor 1 by serine protease inhibitors. An effect associated with nuclear factor-kappaB inhibition. J Biol Chem 1998; 273:16446–16452.

    Article  CAS  PubMed  Google Scholar 

  161. Bagatell R, Paine-Murrieta GD, Taylor CW et al. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 2000; 6:3312–3318.

    CAS  PubMed  Google Scholar 

  162. Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 2004; 3:1021–1030.

    Article  CAS  PubMed  Google Scholar 

  163. Jurivich DA, Sistonen L, Kroes RA et al. Effect of sodium salicylate on the human heat shock response. Science 1992; 255:1243–1245.

    Article  CAS  PubMed  Google Scholar 

  164. Lee BS, Chen J, Angelidis C et al. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci USA 1995; 92:7207–7211.

    Article  CAS  PubMed  Google Scholar 

  165. Amici C, Sistonen L, Santoro MG et al. Antiproliferative prostaglandins activate heat shock transcription factor. Proc Natl Acad Sci USA 1992; 89:6227–6231.

    Article  CAS  PubMed  Google Scholar 

  166. Jurivich DA, Sistonen L, Sarge KD et al. Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci USA 1994; 91:2280–2284.

    Article  CAS  PubMed  Google Scholar 

  167. Westerheide SD, Bosman JD, Mbadugha BN et al. Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 2004; 279:56053–56060.

    Article  CAS  PubMed  Google Scholar 

  168. Trott A, West JD, Klaic L et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell. 2008;19(3):1104–12. Epub 2008 Jan 16.

    Article  CAS  PubMed  Google Scholar 

  169. Katsuno M, Sang C, Adachi H et al. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 2005; 102:16801–16806.

    Article  CAS  PubMed  Google Scholar 

  170. Zhang YQ, Sarge KD. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 2007; 85:1421–1428.

    Article  CAS  PubMed  Google Scholar 

  171. Boyce M, Bryant KF, Jousse C et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 307:935–939.

    Article  CAS  PubMed  Google Scholar 

  172. Parker JA, Arango M, Abderrahmane S et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37:349–350.

    Article  CAS  PubMed  Google Scholar 

  173. Voisine C, Varma H, Walker N et al. Identification of potential therapeutic drugs for huntington’s disease using Caenorhabditis elegans. PLoS ONE 2007; 2:e504.

    Article  PubMed  CAS  Google Scholar 

  174. Varma H, Cheng R, Voisine C et al. Inhibitors of metabolism rescue cell death in Huntington’s disease models. Proc Natl Acad Sci USA 2007; 104:14525–14530.

    Article  CAS  PubMed  Google Scholar 

  175. Varma H, Voisine C, DeMarco CT et al. Selective inhibitors of death in mutant huntingtin cells. Nat Chem Biol 2007; 3:99–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Morimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kikis, E.A., Gidalevitz, T., Morimoto, R.I. (2010). Protein Homeostasis in Models of Aging and Age-Related Conformational Disease. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_11

Download citation

Publish with us

Policies and ethics