Skip to main content

The Many Faces of Inhibitory Plasticity: Adding Flexibility to Cortical Circuits Throughout Development

  • Chapter
  • First Online:
Inhibitory Synaptic Plasticity

Abstract

Neocortical circuits are highly interconnected networks of excitatory and inhibitory neurons. During postnatal development the connectivity and strength of excitatory and inhibitory synapses and the intrinsic properties of each neuron type sculpt the overall level of excitability of the circuit and support network function. Healthy neural circuits are characterized by a high sensitivity to changes in environmental stimuli and a finely tuned dynamic range. A balanced combination of excitatory and inhibitory inputs endows cortical circuits with the ability to maintain a dynamically stable level of excitability despite changes in sensory inputs. How this dynamically stable state is achieved during development is still matter of debate. In the past few decades, our knowledge of cortical neurogenesis, layer differentiation and circuit refinement has expanded dramatically. While most of the research has focused on the regulation of excitatory neocortical neurons, it is now accepted that inhibitory circuits contribute substantially to the achievement and maintenance of cortical circuit stability and function. Here we will focus on recent advancements in our understanding of the postnatal development of local inhibitory circuits and their role in the maintenance of cortical circuit excitability and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95.

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Thomson A (2008) Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cerebral Cortex 18:1260–1271.

    Article  PubMed  Google Scholar 

  • Bartley AF, Huang ZJ, Huber KM, Gibson JR (2008) Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits. J Neurophysiol 100:1983–1994.

    Article  PubMed  Google Scholar 

  • Beierlein M, Gibson J, Connors B (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000.

    Article  PubMed  Google Scholar 

  • Bender K, Allen C, Bender V, Feldman D (2006) Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex. J Neurosci 26:4155–4165.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov Y, Michels G, Armstrong-Gold C, Haydon P, Lindstrom J, Pangalos M, Moss S (2006) Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J 25:4381–4389.

    Article  CAS  PubMed  Google Scholar 

  • Bosman L, Rosahl T, Brussaard A (2002) Neonatal development of the rat visual cortex: synaptic function of GABAA receptor alpha subunits. J Physiol 545:169–181.

    Article  CAS  PubMed  Google Scholar 

  • Brandon N, Delmas P, Kittler J, McDonald B, Sieghart W, Brown D, Smart T, Moss S (2000) GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 275:38856–38862.

    Article  CAS  PubMed  Google Scholar 

  • Burkhalter A (2008) Many specialists for suppressing cortical excitation. Front Neurosci 2:155–167.

    Article  CAS  PubMed  Google Scholar 

  • Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604.

    Article  CAS  PubMed  Google Scholar 

  • Cang J, Rentería R, Kaneko M, Liu X, Copenhagen D, Stryker M (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–789.

    Article  CAS  PubMed  Google Scholar 

  • Cellerino A, Maffei L (1996) The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol 49:53–71.

    Google Scholar 

  • Chandrasekaran A, Shah R, Crair M (2007) Developmental homeostasis of mouse retinocollicular synapses. J Neurosci 27:1746–1755.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, Huang ZJ (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24:9598–9611.

    Article  CAS  PubMed  Google Scholar 

  • Cheetham C, Hammond M, Edwards C, Finnerty G (2007) Sensory experience alters cortical connectivity and synaptic function site specifically. J Neurosci 27:3456–3465.

    Article  CAS  PubMed  Google Scholar 

  • Cheetham C, Hammond M, McFarlane R, Finnerty G (2008) Altered sensory experience induces targeted rewiring of local excitatory connections in mature neocortex. J Neurosci 28:9249–9260.

    Article  CAS  PubMed  Google Scholar 

  • Contreras D (2004) Electrophysiological classes of neocortical neurons. Neural Netw 17:633–646.

    Article  PubMed  Google Scholar 

  • Cruikshank S, Lewis T, Connors B (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10:462–468.

    CAS  PubMed  Google Scholar 

  • Dantzker JL, Callaway EM (1998) The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J Neurosci 18:4145–4154.

    CAS  PubMed  Google Scholar 

  • Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707.

    Article  CAS  PubMed  Google Scholar 

  • Dunning D, Hoover C, Soltesz I, Smith M, O’Dowd D (1999) GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. Jounal of Neurophysiology 82:3286–3297.

    Google Scholar 

  • de la Rocha J, Marchetti C, Schiff M, Reyes AD (2008) Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition. J Neurosci 28:9151–9163.

    Article  PubMed  Google Scholar 

  • Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Belanger MC, Wu CZ, Rutishauser U, Maffei L, Huang ZJ (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569–1577.

    Article  PubMed  Google Scholar 

  • Dunning D, Hoover C, Soltesz I, Smith M, O’Dowd D (1999) GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. J Neurophysiol 82:3286–3297.

    CAS  PubMed  Google Scholar 

  • Fagiolini M, Hensch T (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186.

    Article  CAS  PubMed  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720.

    Article  CAS  PubMed  Google Scholar 

  • Feller M, Scanziani M (2005) A precritical period for plasticity in visual cortex. Curr Opin Neurobiol 15:94–100.

    Article  CAS  PubMed  Google Scholar 

  • Fountain N (2000) Status epilepticus: risk factors and complications. Epilepsia 41:23–30.

    Google Scholar 

  • Freund TF (2003) Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495.

    Article  CAS  PubMed  Google Scholar 

  • Fritschy J, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323.

    Article  CAS  PubMed  Google Scholar 

  • Gao WJ, Wormington AB, Newman DE, Pallas SL (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J Comp Neurol 422:140–157.

    Article  CAS  PubMed  Google Scholar 

  • Genoud C, Knott GW, Sakata K, Lu B, Welker E (2004) Altered synapse formation in the adult somatosensory cortex of brain-derived neurotrophic factor heterozygote mice. J Neurosci 24:2394–2400.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Gomes RA, Hampton C, El-Sabeawy F, Sabo SL, McAllister AK (2006) The dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons. J Neurosci 26:11487–11500.

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Burkhalter A (1999a) Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cereb Cortex 9:683–696.

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Burkhalter A (1999b) Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J Comp Neurol 406:346–360.

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Wang Q, Burkhalter A (2007) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 1:3.

    PubMed  Google Scholar 

  • Gonchar Y, Turney S, Price JL, Burkhalter A (2002) Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. J Comp Neurol 443:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278.

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Nowotny T, Abarbanel H (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313.

    Article  PubMed  Google Scholar 

  • Hajós F, Staiger J, Halasy K, Freund T, K Z (1997) Geniculo-cortical afferents form synaptic contacts with vasoactive intestinal polypeptide (VIP) immunoreactive neurons of the rat visual cortex. Neuroscience Letters 228:179–182.

    Google Scholar 

  • Harms K, Rioult-Pedotti M, Carter D, Dunaevsky A (2008) Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex. J Neurosci 28:5686–5690.

    Google Scholar 

  • Harvey J, Romano A, Gabriel M, Simansky K, Du W, Aloyo V, Friedman E (2001) Effects of prenatal exposure to cocaine on the developing brain: anatomical, chemical, physiological and behavioral consequences. Neurotox Res 3:117–143.

    Google Scholar 

  • Heinen K, Bosman L, Spijker S, van Pelt J, Smit A, Voorn P, Baker R, Brussaard A (2004) GABAA receptor maturation in relation to eye opening in the rat visual cortex. Neuroscience 124:161–171.

    Article  CAS  PubMed  Google Scholar 

  • Hensch T (2004) Critical period regulation. Ann Rev Neurosci 27:549–579.

    Article  CAS  PubMed  Google Scholar 

  • Hensch T, Fagiolini M (2005) Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res 147:115–124.

    Article  CAS  PubMed  Google Scholar 

  • Hensch T, Fagiolini M, Mataga N, Stryker M, Baekkeskov S, Kash S (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508.

    Article  CAS  PubMed  Google Scholar 

  • Heuschneider G, Schwartz R (1989) cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes. Proc Natl Acad Sci 86:2938–2942.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren CD, Zilberter Y (2001) Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J Neurosci 21:8270–8277.

    CAS  PubMed  Google Scholar 

  • Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5:1177–1184.

    Article  CAS  PubMed  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755.

    Article  CAS  PubMed  Google Scholar 

  • Hull C, Isaacson J, Scanziani M (2009) Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs. J Neurosci 29:9127–9136.

    Article  CAS  PubMed  Google Scholar 

  • Inan M, Crair M (2007) Development of cortical maps: perspectives from the barrel cortex. Neurosci 13:49–61.

    Google Scholar 

  • Jiao Y, Zhang C, Yanagawa Y, Sun Q (2006) Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits. J Neurosci 26:8691–8701.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri H, Fagiolini M, Hensch T (2007) Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron 53:805–812.

    Article  CAS  PubMed  Google Scholar 

  • Katz L, Shatz C (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu Y (1994) Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J Neurosci 14:6488–6499.

    CAS  PubMed  Google Scholar 

  • Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16:6342–6352.

    CAS  PubMed  Google Scholar 

  • Komatsu Y, Iwakiri M (1993) Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 4:907–910.

    Article  CAS  PubMed  Google Scholar 

  • Kotak V, Takesian A, Sanes D (2008) Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cerebral Cortex 18:2098–2108.

    Article  PubMed  Google Scholar 

  • Kreczko A, Goel A, Song L, Lee HK (2009) Visual deprivation decreases somatic GAD65 puncta number on layer 2/3 pyramidal neurons in mouse visual cortex. Neural Plast 2009:415135.

    Article  PubMed  Google Scholar 

  • Kumar S, Khisti R, Morrow A (2005) Regulation of native GABAA receptors by PKC and protein phosphatase activity. Psychopharmacology 183:241–247.

    Article  CAS  PubMed  Google Scholar 

  • Kurotani T, Yamada K, Yoshimura Y, Crair M, Komatsu Y (2008) State-dependent bidirectional modification of somatic inhibition in neocortical pyramidal cells. Neuron 57:905–916.

    Article  CAS  PubMed  Google Scholar 

  • Maffei A, Turrigiano G (2008a) Multiple modes of network homeostasis in visual cortical layer 2/3. J Neurosci 28:4377–4384.

    Article  CAS  PubMed  Google Scholar 

  • Maffei A, Turrigiano G (2008b) The age of plasticity: developmental regulation of synaptic plasticity in neocortical microcircuits. Progress in Brain Research 169:211–223.

    Article  PubMed  Google Scholar 

  • Maffei A, Fontanini A (2009) Network homeostasis: a matter of coordination. Current Opinion in Neurobiology 19:168–173.

    Article  CAS  PubMed  Google Scholar 

  • Maffei A, Nataraj K, Nelson S, Turrigiano G (2006) Potentiation of cortical inhibition by visual deprivation. Nature 443:81–84.

    Google Scholar 

  • Maffei A, Nelson S, Turrigiano G (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7:1353–1359.

    Article  CAS  PubMed  Google Scholar 

  • Mainardi M, Landi S, Berardi N, Maffei L, Pizzorusso T (2009) Reduced responsiveness to long-term monocular deprivation of parvalbumin neurons assessed by c-Fos staining in rat visual cortex. PloS One 4:e4342.

    Article  PubMed  Google Scholar 

  • Marks C, Cheng K, Cummings D, Belluscio L (2006) Activity-dependent plasticity in the olfactory intrabulbar map. J Neurosci 26:11257–11266.

    Google Scholar 

  • Marty S, Berzaghi Mda P, Berninger B (1997) Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 20:198–202.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G, Butt SJ, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci 27:7786–7798.

    Article  CAS  PubMed  Google Scholar 

  • Nothias F, Fishell G, Ruizi Altaba A (1998) Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr Biol 8:459–462.

    Article  CAS  PubMed  Google Scholar 

  • Nugent F, Penick E, Kauer J (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446:1086–1090.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 29:10533–10540.

    Article  CAS  PubMed  Google Scholar 

  • Rutherford L, Nelson S, Turrigiano G (1998) BDNF Has Opposite Effects on the Quantal Amplitude of Pyramidal Neuron and Interneuron Excitatory Synapses. Neuron 21:521–530.

    Google Scholar 

  • Spatkowski G, Schilling K (2003) Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro. J Neurosci Res 72:317–326.

    Article  CAS  PubMed  Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns and Connections. Proc Natl Acad Sci USA 50:703–710.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, Hensch TK (2008) Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134:508–520.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q (2009) Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV. J Neurophysiol (in press).

    Google Scholar 

  • Tagawa Y, Kanold P, Majdan M, Shatz C (2005) Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8:380–388.

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Hu H, Huang Z, Agmon A (2008) Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons. Proc Natl Acad Sci 105:2187–2192.

    Article  CAS  PubMed  Google Scholar 

  • Thomson A, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19–42.

    Article  CAS  PubMed  Google Scholar 

  • Tyler W, Petzold G, Pal S, Murthy V (2007) Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb. J Neurosci 27:9427–9438.

    Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410.

    Article  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963a) Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. J Neurophysiol 26:978–993.

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963b) Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in One Eye. J Neurophysiol 26:1003–1017.

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28:1060–1072.

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158:307–318.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff A, Yuste R (2008) Of Mice and men, and chandeliers. PloS Bio 6:e243.

    Article  Google Scholar 

  • Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622.

    Article  CAS  PubMed  Google Scholar 

  • Yoon B, Smith G, Heynen A, Neve R, Bear M (2009) Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc Natl Acad Sci USA 106:9860–9865.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Sanes D, Aristizabal O, Wadghiri Y, Turnbull D (2007) Large-scale reorganization of the tonotopic map in mouse auditory midbrain revealed by MRI. Proc Natl Acad Sci 104:12193–12198.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the NIH/NEI R01 grant EY019885 (AM). We thank Martha Stone and Alfredo Fontanini for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Maffei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L., Maffei, A. (2011). The Many Faces of Inhibitory Plasticity: Adding Flexibility to Cortical Circuits Throughout Development. In: Woodin, M., Maffei, A. (eds) Inhibitory Synaptic Plasticity. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6978-1_1

Download citation

Publish with us

Policies and ethics