Skip to main content

Closing the Gap Between Electrical and Physical Design: The Layout-Aware Solution

  • Chapter
  • First Online:
Analog Layout Synthesis

Abstract

Iterations between separate phases in any procedural design process, usually a by-product of unexpected (or, simply, very complex to consider) adverse effects, clearly play against any time-to-market requirements. In analog integrated circuit (IC) design, going back and forth between electrical and physical synthe- sis to counterbalance layout-induced performance degradations needs to be thus avoided as much as possible. One possible solution involves the integration of the 1 traditionally separated electrical and physical synthesis phases, by including layout- induced effects, in the form of layout parasitics, right into the electrical synthesis phase, in what has been called parasitic-aware synthesis. This solution, as such, is not yet complete since there are geometric requirements (minimization of the occu- pied area or fulfillment of certain layout aspect ratio, among others), whose effects on the resulting parasitics are not usually considered during electrical synthesis. In this chapter, a layout-aware solution that tackles both geometric and parasitic-aware electrical synthesis is proposed. This technique uses a combination of simulation- based optimization, procedural layout generation, exhaustive geometric evaluation algorithms, and several mechanisms for parasitic estimation. Thanks to the nature of this combination, the solution benefits from, and also fosters, reuse of analog intellectual property (IP) blocks. Several detailed design examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Int. Technology Roadmap for Semiconductors. [Online]. Available: http://public.itrs.net, 2005.

  2. MEDEA+ Design Automation Roadmap. [Online]. Available: http://www.medeaplus.org, 2007.

  3. M. Degrauwe, O. Nys, and E. Dijkstra, “IDAC: An interactive design tool for analog CMOS circuits,” IEEE J. Solid-State Circuits, vol. SSC-22, no. 6, pp. 1106 – 1116, Dec 1987.

    Article  Google Scholar 

  4. J. Conway and G. Schrooten, “An automatic layout generator for analog circuits,” in European Design Automation Conference, Mar 1992, pp. 513 – 519.

    Google Scholar 

  5. R. Castro-Lopez, F. Fernandez, and F. Medeiro, “Generation of technology-independent retargetable analog blocks,” Analog Integrated Circuits and Signal Processing, vol. 3, no. 2, pp. 157 – 170, Nov 2002.

    Article  Google Scholar 

  6. N. Jangkrajarng, S. Bhattacharya, and R. Hartono, “IPRAIL – intellectual property reuse-based analog IC layout automation,” Integration, VLSI J., Nov 2003.

    Google Scholar 

  7. S. Bhattacharya, N. Jangkrajarng, and C. Shi, “Multilevel symmetry-constraint generation for retargeting large analog layouts,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 25, no. 6, pp. 945 – 960, Jun 2006.

    Article  Google Scholar 

  8. S. Bhattacharya, N. Jangkrajarng, and C. Shi, “Template-driven parasitic-aware optimization of analog integrated circuit layouts,” in ACM/IEEE Design Automation Conference (DAC), Jun 2005, pp. 644 – 647.

    Google Scholar 

  9. N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen, and C. Shi, “Template-based parasitic-aware optimization and retargeting of analog and RF integrated circuit layouts,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov 2006, pp. 342 – 348.

    Google Scholar 

  10. J. Harvey, M. Elmasry, and B. Leung, “STAIC: An interactive framework for synthesizing CMOS and BiCMOS analog circuits,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 11, no. 1, pp. 1402 – 1417, Nov 1992.

    Article  Google Scholar 

  11. G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design optimization based on symbolic simulation and simulated annealing,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 707 – 713, Jun 1990.

    Article  Google Scholar 

  12. P. Maulik, L. Carley, and D. Allstot, “Sizing of cell-level analog circuits using constrained optimization techniques,” IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 233 – 241, Mar 1993.

    Article  Google Scholar 

  13. M. Hershenson, S. Boyd, and T. Lee, “Optimal design of a CMOS op-amp via geometric programming,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 20, no. 1, pp. 1–21, Jan 2001.

    Article  Google Scholar 

  14. F. Fernández, A. Rodríguez, and J. L. Huertas, Symbolic Analysis Techniques: Applications to Analog Design Automation. IEEE Press, New York, 1997.

    Google Scholar 

  15. C. Shi and X.-D. Tan;, “Canonical symbolic analysis of large analog circuits with determinant decision diagrams,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 19, no. 1, pp. 1 – 18, Jan 2000.

    Article  Google Scholar 

  16. P. Vancorenland, G. V. der Plas, M. Steyaert, G. Gielen, and W. Sansen, “A layout-aware synthesis methodology for RF circuits,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov 2001, pp. 358 – 362.

    Google Scholar 

  17. W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits, “DELIGHT.SPICE: An optimization-based system for the design of integrated circuits,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 7, no. 4, pp. 501 – 519, Apr 1988.

    Article  Google Scholar 

  18. G. Stehr, M. Pronath, F. Schenkel, H. Graeb, and K. Antreich, “Initial sizing of analog integrated circuits by centering within topology-given implicit specifications,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov 2003, pp. 241 – 246.

    Google Scholar 

  19. R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, “Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 19, no. 6, pp. 703 – 717, Jun 2000.

    Article  Google Scholar 

  20. F. Medeiro, A. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-Down Design of High-Performance Sigma-Delta Modulators. Kluwer, Dordrecht, 1999.

    Google Scholar 

  21. E. Ochotta, R. Rutenbar, and L. Carley, “Synthesis of high-performance analog circuits in ASTRX/OBLX,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 15, no. 3, pp. 273 – 294, Mar 1996.

    Article  Google Scholar 

  22. H. Chang, E. Liu, R. Neff, E. Felt, and E. Malavasi, Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits. Kluwer, Dordrecht, 97.

    Google Scholar 

  23. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, “KOAN/ANAGRAM II: new tools for device-level analog placement and routing,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 330 – 342, Mar 1991.

    Article  Google Scholar 

  24. K. Lampaert, G. Gielen, and W. Sansen, Analog Layout Generation for Performance and Manufacturability. Kluwer, Dordrecht, 1999.

    Google Scholar 

  25. M. Dessouky and M. Louerat, “A layout approach for electrical and physical design integration of high-performance analog circuits,” in IEEE First International Symposium on Quality Electronic Design (ISQED), Mar 2000, pp. 291 – 298.

    Google Scholar 

  26. H. Onodera, H. Kanbara, and K. Tamaru, “Operational-amplifier compilation with performance optimization,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 466 – 473, Apr 1990.

    Article  Google Scholar 

  27. A. Agarwal, H. Sampath, V. Yelamanchili, and R. Vemuri, “Fast and accurate parasitic capacitance models for layout-aware synthesis of analog circuits,” in Design Automation Conference and Test in Europe Conference (DATE), Mar 2004, pp. 145 – 150.

    Google Scholar 

  28. M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, and G. Gielen, “Fast, layout-inclusive analog circuit synthesis using pre-compiled parasitic-aware symbolic performance models,” in Design Automation Conference and Test in Europe Conference (DATE), vol. 1, Feb 2004, pp. 604 – 609.

    Google Scholar 

  29. A. Pradhan and R. Vemuri, “Efficient synthesis of a uniformly spread layout aware pareto surface for analog circuits,” in 22nd International Conference on VLSI Design, Dec 2009, pp. 131 – 136.

    Google Scholar 

  30. R. Castro-Lopez, O. Guerra, E. Roca, and F. Fernandez, “An integrated layout-synthesis approach for analog ics,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 27, no. 7, pp. 1179 – 1189, Jul 2008.

    Article  Google Scholar 

  31. R. P. Brent, Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood Cliffs, NJ, 2002.

    MATH  Google Scholar 

  32. G. Zhang, A. Dengi, R. Rohrer, R. Rutenbar, and L. Carley, “A synthesis flow toward fast parasitic closure for radio-frequency integrated circuits,” in ACM/IEEE Design Automation Conference (DAC), 2004, pp. 155 – 158.

    Google Scholar 

  33. Virtuoso Parameterized Cell Reference, 4th ed., Cadence Des. Syst. Inc., San Jose, CA, 2000.

    Google Scholar 

  34. SKILL Language Reference, 6th ed., Cadence Des. Syst. Inc., San Jose, CA, 2004.

    Google Scholar 

  35. R. Otten, “Automatic floorplan design,” in ACM/IEEE Design Automation Conference (DAC), 1982, pp. 261 – 267.

    Google Scholar 

  36. L. Stockmeyer, “Optimal orientations of cells in slicing floorplan designs.” Inf. Control, vol. 57, no. 2/3, pp. 91 – 101, May/Jun 1983.

    Google Scholar 

  37. H. Koh, C. Sequin, and P. Gray, “OPASYN: a compiler for CMOS operational amplifiers,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 9, no. 2, pp. 113 – 125, Feb 1990.

    Article  Google Scholar 

  38. R. Naiknaware and T. Fiez, “Automated hierarchical CMOS analog circuit stack generation with intramodule connectivity and matching considerations,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 304 – 303, Mar 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Castro-Lόpez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castro-Lόpez, R., Roca, E., Fernández, F.V. (2011). Closing the Gap Between Electrical and Physical Design: The Layout-Aware Solution. In: Graeb, H. (eds) Analog Layout Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6932-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6932-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6931-6

  • Online ISBN: 978-1-4419-6932-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics