Skip to main content

Ceramide-1-Phosphate in Cell Survival and Inflammatory Signaling

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 688))

Abstract

An important metabolite of ceramide is ceramide-1-phosphate (C1P). This lipid second messenger was first demonstrated to be mitogenic for fibroblasts and macrophages and later shown to have antiapoptotic properties. C1P is also an important mediator of the inflammatory response, by stimulating the release of arachidonic acid through activation of group IVA cytosolic phospholipase A2, the initial rate-limiting step of eicosanoid biosynthesis. C1P is formed from ceramide by the action of a specific ceramide kinase (CerK), which is distinct from the sphingosine kinases that synthesize sphingosine-1-phosphate. CerK is specific for natural ceramides with the erythro configuration in the base component and esterified to long-chain fatty acids. CerK can be activated by different agonists, including interleukin 1-beta, macrophage colony stimulating factor, or calcium ions. Most of the effects of C1P so far described seem to take place in intracellular compartments; however, the recent observation that C1P stimulates cell migration implicates a specific plasma membrane receptor that is coupled to a Gi protein. Therefore, C1P has a dual regulatory capacity acting as an intracellular second messenger to regulate cell survival, or as extracellular receptor ligand to stimulate chemotaxis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang J, Xu M. Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol 2002; 12:84–9.

    Article  CAS  PubMed  Google Scholar 

  2. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–54.

    Article  CAS  PubMed  Google Scholar 

  3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267:1456–62.

    Article  CAS  PubMed  Google Scholar 

  4. Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1990; 1044:1–12.

    CAS  PubMed  Google Scholar 

  5. Merrill AH Jr, Schmelz EM, Dillehay DL et al. Sphingolipids—the enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxicol Appl Pharmacol 1997; 142:208–25.

    Article  CAS  PubMed  Google Scholar 

  6. Merrill AH Jr. Cell regulation by sphingosine and more complex sphingolipids. J Bioenerg Biomembr 1991; 23:83–104.

    CAS  PubMed  Google Scholar 

  7. Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 2002; 277:25843–6.

    Article  CAS  PubMed  Google Scholar 

  8. Spiegel S, Merrill AH Jr. Sphingolipid metabolism and cell growth regulation. Faseb J 1996; 10:1388–97.

    CAS  PubMed  Google Scholar 

  9. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77:325–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kolesnick RN. 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 1987; 262:16759–62.

    CAS  PubMed  Google Scholar 

  11. Kolesnick RN, Hemer MR. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem 1990; 265:18803–8.

    CAS  PubMed  Google Scholar 

  12. Kolesnick RN, Goni FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 2000; 184:285–300.

    Article  CAS  PubMed  Google Scholar 

  13. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269:3125–8.

    CAS  PubMed  Google Scholar 

  14. Hannun YA, Loomis CR, Merrill AH Jr et al. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 1986; 261:12604–9.

    CAS  PubMed  Google Scholar 

  15. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 1995; 20:73–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996; 274:1855–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 2002; 277:25847–50.

    Article  CAS  PubMed  Google Scholar 

  18. Brann AB, Scott R, Neuberger Y et al. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci 1999; 19:8199–206.

    CAS  PubMed  Google Scholar 

  19. Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults and amyloid beta-peptide toxicity. J Neurochem 1996; 66:869–72.

    Article  CAS  PubMed  Google Scholar 

  20. Ping SE, Barrett GL. Ceramide can induce cell death in sensory neurons, whereas ceramide analogues and sphingosine promote survival. J Neurosci Res 1998; 54:206–13.

    Article  CAS  PubMed  Google Scholar 

  21. Plummer G, Perreault KR, Holmes CF et al. Activation of serine/threonine protein phosphatase-1 is required for ceramide-induced survival of sympathetic neurons. Biochem J 2005; 385:685–93.

    Article  CAS  PubMed  Google Scholar 

  22. Song MS, Posse de Chaves EI. Inhibition of rat sympathetic neuron apoptosis by ceramide. Role of p75NTR in ceramide generation. Neuropharmacology 2003; 45:1130–50.

    Article  CAS  PubMed  Google Scholar 

  23. Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science 1992; 255:1715–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gómez-Muñoz A. Modulation of cell signalling by ceramides. Biochim Biophys Acta 1998; 1391:92–109.

    PubMed  Google Scholar 

  25. Mathias S, Dressler KA, Kolesnick RN. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci USA 1991; 88:10009–13.

    Article  CAS  PubMed  Google Scholar 

  26. Mathias S, Kolesnick R. Ceramide: a novel second messenger. Adv Lipid Res 1993; 25:65–90.

    CAS  PubMed  Google Scholar 

  27. Okazaki T, Bielawska A, Bell RM et al. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 1990; 265:15823–31.

    CAS  PubMed  Google Scholar 

  28. Menaldino DS, Bushnev A, Sun A et al. Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res 2003; 47:373–81.

    Article  CAS  PubMed  Google Scholar 

  29. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003; 22:7070–7.

    Article  CAS  PubMed  Google Scholar 

  30. Adams JM 2nd, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004; 53:25–31.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitz-Peiffer C. Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann N Y Acad Sci 2002; 967:146–57.

    Article  CAS  PubMed  Google Scholar 

  32. Stratford S, Hoehn KL, Liu F et al. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 2004; 279:36608–15.

    Article  CAS  PubMed  Google Scholar 

  33. Sun L, Xu L, Henry FA et al. A new wound healing agent—sphingosylphosphorylcholine. J Invest Dermatol 1996; 106:232–7.

    Article  CAS  PubMed  Google Scholar 

  34. Spiegel S, Foster D, Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol 1996; 8:159–67.

    Article  CAS  PubMed  Google Scholar 

  35. Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 2002; 277:25851–4.

    Article  CAS  PubMed  Google Scholar 

  36. Spiegel S, Olivera A, Carlson RO. The role of sphingosine in cell growth regulation and transmembrane signaling. Adv Lipid Res 1993; 25:105–29.

    CAS  PubMed  Google Scholar 

  37. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003; 4:397–407.

    Article  CAS  PubMed  Google Scholar 

  38. Gómez-Muñoz A. Ceramide-1-phosphate: a novel regulator of cell activation. FEBS Lett 2004; 562:5–10.

    Article  PubMed  CAS  Google Scholar 

  39. Gómez-Muñoz A, Duffy PA, Martin A et al. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides. Mol Pharmacol 1995; 47:833–9.

    PubMed  Google Scholar 

  40. Gómez-Muñoz A, Frago LM, Alvarez L et al. Stimulation of DNA synthesis by natural ceramide 1-phosphate. Biochem J 1997; 325 (Pt 2):435–40.

    PubMed  Google Scholar 

  41. Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett 2002; 531:38–46.

    Article  CAS  PubMed  Google Scholar 

  42. Cremesti AE, Goni FM, Kolesnick R. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 2002; 531:47–53.

    Article  CAS  PubMed  Google Scholar 

  43. Merrill AH Jr, Sullards MC, Allegood JC et al. Sphingolipidomics: high-throughput, structure-specific and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005; 36:207–24.

    Article  CAS  PubMed  Google Scholar 

  44. Pettus BJ, Bielawska A, Kroesen BJ et al. Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 2003; 17:1203–11.

    Article  CAS  PubMed  Google Scholar 

  45. Merrill AH Jr, Sullards MC, Wang E et al. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 2001; 109(Suppl 2):283–9.

    Article  CAS  PubMed  Google Scholar 

  46. Van Overloop H, Denizot Y, Baes M et al. On the presence of C2-ceramide in mammalian tissues: possible relationship to etherphospholipids and phosphorylation by ceramide kinase. Biol Chem 2007; 388:315–24.

    Article  PubMed  CAS  Google Scholar 

  47. Smith ER, Jones PL, Boss JM et al. Changing J774A.1 cells to new medium perturbs multiple signaling pathways, including the modulation of protein kinase C by endogenous sphingoid bases. J Biol Chem 1997; 272:5640–6.

    Article  CAS  PubMed  Google Scholar 

  48. Gómez-Muñoz A, Hamza EH, Brindley DN. Effects of sphingosine, albumin and unsaturated fatty acids on the activation and translocation of phosphatidate phosphohydrolases in rat hepatocytes. Biochim Biophys Acta 1992; 1127:49–56.

    PubMed  Google Scholar 

  49. Jamal Z, Martin A, Gómez-Muñoz A et al. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem 1991; 266:2988–96.

    CAS  PubMed  Google Scholar 

  50. Natarajan V, Jayaram HN, Scribner WM et al. Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am J Respir Cell Mol Biol 1994; 11:221–9.

    CAS  PubMed  Google Scholar 

  51. Sakane F, Yamada K, Kanoh H. Different effects of sphingosine, R59022 and anionic amphiphiles on two diacylglycerol kinase isozymes purified from porcine thymus cytosol. FEBS Lett 1989; 255:409–13.

    Article  CAS  PubMed  Google Scholar 

  52. Yamada K, Sakane F, Imai S et al. Sphingosine activates cellular diacylglycerol kinase in intact Jurkat cells, a human T-cell line. Biochim Biophys Acta 1993; 1169:217–24.

    CAS  PubMed  Google Scholar 

  53. Wu J, Spiegel S, Sturgill TW. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem 1995; 270:11484–8.

    Article  CAS  PubMed  Google Scholar 

  54. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993; 365:557–60.

    Article  CAS  PubMed  Google Scholar 

  55. Rabano M, Pena A, Brizuela L et al. Sphingosine-1-phosphate stimulates cortisol secretion. FEBS Lett 2003; 535:101–5.

    Article  CAS  PubMed  Google Scholar 

  56. Brizuela L, Rabano M, Pena A et al. Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. J Lipid Res 2006; 47:1238–49.

    Article  CAS  PubMed  Google Scholar 

  57. Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 2005; 118:4605–12.

    Article  CAS  PubMed  Google Scholar 

  58. Lamour NF, Chalfant CE. Ceramide-1-phosphate: the “missing” link in eicosanoid biosynthesis and inflammation. Mol Interv 2005; 5:358–67.

    Article  CAS  PubMed  Google Scholar 

  59. Hinkovska-Galcheva V, Boxer LA, Kindzelskii A et al. Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem 2005; 280:26612–21.

    Article  CAS  PubMed  Google Scholar 

  60. Hinkovska-Galcheva VT, Boxer LA, Mansfield PJ et al. The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion. J Biol Chem 1998; 273:33203–9.

    Article  CAS  PubMed  Google Scholar 

  61. Bajjalieh SM, Martin TF, Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that copurifies with brain synaptic vesicles. J Biol Chem 1989; 264:14354–60.

    CAS  PubMed  Google Scholar 

  62. Mitsutake S, Kim TJ, Inagaki Y et al. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 2004; 279:17570–7.

    Article  CAS  PubMed  Google Scholar 

  63. Van Overloop H, Gijsbers S, Van Veldhoven PP. Further characterization of mammalian ceramide kinase: substrate delivery and (stereo)specificity, tissue distribution and subcellular localization studies. J Lipid Res 2006; 47:268–83.

    Article  PubMed  CAS  Google Scholar 

  64. Boath A, Graf C, Lidome E et al. Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 2008; 283:8517–26.

    Article  CAS  PubMed  Google Scholar 

  65. Lamour NF, Stahelin RV, Wijesinghe DS et al. Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. J Lipid Res 2007; 48:1293–304.

    Article  CAS  PubMed  Google Scholar 

  66. Baumruker T, Bornancin F, Billich A. The role of sphingosine and ceramide kinases in inflammatory responses. Immunol Lett 2005; 96:175–85.

    Article  CAS  PubMed  Google Scholar 

  67. Truett AP 3rd, King LE Jr. Sphingomyelinase D: a pathogenic agent produced by bacteria and arthropods. Adv Lipid Res 1993; 26:275–91.

    CAS  PubMed  Google Scholar 

  68. Lee S, Lynch KR. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem J 2005; 391:317–23.

    Article  CAS  PubMed  Google Scholar 

  69. Sugiura M, Kono K, Liu H et al. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem 2002; 277:23294–300.

    Article  CAS  PubMed  Google Scholar 

  70. Kim TJ, Mitsutake S, Kato M et al. The leucine 10 residue in the pleckstrin homology domain of ceramide kinase is crucial for its catalytic activity. FEBS Lett 2005; 579:4383–8.

    Article  CAS  PubMed  Google Scholar 

  71. Kim TJ, Mitsutake S, Igarashi Y. The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels. Biochem Biophys Res Commun 2006; 342:611–7.

    Article  CAS  PubMed  Google Scholar 

  72. Wijesinghe DS, Massiello A, Subramanian P et al. Substrate specificity of human ceramide kinase. J Lipid Res 2005; 46:2706–16.

    Article  CAS  PubMed  Google Scholar 

  73. Pettus BJ, Bielawska A, Spiegel S et al. Ceramide kinase mediates cytokine-and calcium ionophore-induced arachidonic acid release. J Biol Chem 2003; 278:38206–13.

    Article  CAS  PubMed  Google Scholar 

  74. Graf C, Zemann B, Rovina P et al. Neutropenia with Impaired Immune Response to Streptococcus pneumoniae in Ceramide Kinase-Deficient Mice. J Immunol 2008; 180:3457–66.

    CAS  PubMed  Google Scholar 

  75. Tuson M, Marfany G, Gonzalez-Duarte R. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 2004; 74:128–38.

    Article  CAS  PubMed  Google Scholar 

  76. Bornancin F, Mechtcheriakova D, Stora S et al. Characterization of a ceramide kinase-like protein. Biochim Biophys Acta 2005; 1687:31–43.

    CAS  PubMed  Google Scholar 

  77. Rile G, Yatomi Y, Takafuta T et al. Ceramide 1-phosphate formation in neutrophils. Acta Haematol 2003; 109:76–83.

    Article  CAS  PubMed  Google Scholar 

  78. Riboni L, Bassi R, Anelli V et al. Metabolic formation of ceramide-1-phosphate in cerebellar granule cells: evidence for the phosphorylation of ceramide by different metabolic pathways. Neurochem Res 2002; 27:711–6.

    Article  CAS  PubMed  Google Scholar 

  79. Gangoiti P, Granado MH, Wang SW et al. Ceramide 1-phosphate stimulates macrophage proliferation through activation of the PI3-kinase/PKB, JNK and ERK1/2 pathways. Cell Signal 2008; 20:726–36.

    Article  CAS  PubMed  Google Scholar 

  80. Pettus BJ, Bielawska A, Subramanian P et al. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 2004; 279:11320–6.

    Article  CAS  PubMed  Google Scholar 

  81. Pettus BJ, Kitatani K, Chalfant CE et al. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 2005; 68:330–5.

    CAS  PubMed  Google Scholar 

  82. Nakamura H, Hirabayashi T, Shimizu M et al. Ceramide-1-phosphate activates cytosolic phospholipase A2alpha directly and by PKC pathway. Biochem Pharmacol 2006; 71:850–7.

    Article  CAS  PubMed  Google Scholar 

  83. Subramanian P, Stahelin RV, Szulc Z et al. Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 alpha and enhances the interaction of the enzyme with phosphatidylcholine. J Biol Chem 2005; 280:17601–7.

    Article  CAS  PubMed  Google Scholar 

  84. Gómez-Muñoz A, Kong JY, Salh B et al. Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 2004; 45:99–105.

    Article  PubMed  CAS  Google Scholar 

  85. Shinghal R, Scheller RH, Bajjalieh SM. Ceramide 1-phosphate phosphatase activity in brain. J Neurochem 1993; 61:2279–85.

    Article  CAS  PubMed  Google Scholar 

  86. Boudker O, Futerman AH. Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. J Biol Chem 1993; 268:22150–5.

    CAS  PubMed  Google Scholar 

  87. Waggoner DW, Gómez-Muñoz A, Dewald J et al. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate and sphingosine 1-phosphate. J Biol Chem 1996; 271:16506–9.

    Article  CAS  PubMed  Google Scholar 

  88. Brindley DN, Waggoner DW. Mammalian lipid phosphate phosphohydrolases. J Biol Chem 1998; 273:24281–4.

    Article  CAS  PubMed  Google Scholar 

  89. Long J, Darroch P, Wan KF et al. Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. Biochem J 2005; 391:25–32.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao Y, Usatyuk PV, Cummings R et al. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 2005; 385:493–502.

    Article  CAS  PubMed  Google Scholar 

  91. Gijsbers S, Mannaerts GP, Himpens B et al. N-acetyl-sphingenine-1-phosphate is a potent calcium mobilizing agent. FEBS Lett 1999; 453:269–72.

    Article  CAS  PubMed  Google Scholar 

  92. Hogback S, Leppimaki P, Rudnas B et al. Ceramide 1-phosphate increases intracellular free calcium concentrations in thyroid FRTL-5 cells: evidence for an effect mediated by inositol 1,4,5-trisphosphate and intracellular sphingosine 1-phosphate. Biochem J 2003; 370:111–9.

    Article  PubMed  CAS  Google Scholar 

  93. Colina C, Flores A, Castillo C et al. Ceramide-1-P induces Ca2+ mobilization in Jurkat T-cells by elevation of Ins(1,4,5)-P3 and activation of a store-operated calcium channel. Biochem Biophys Res Commun 2005; 336:54–60.

    Article  CAS  PubMed  Google Scholar 

  94. Jaworowski A, Wilson NJ, Christy E et al. Roles of the mitogen-activated protein kinase family in macrophage responses to colony stimulating factor-1 addition and withdrawal. J Biol Chem 1999; 274:15127–33.

    Article  CAS  PubMed  Google Scholar 

  95. Hundal RS, Gómez-Muñoz A, Kong JY et al. Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem 2003; 278:24399–408.

    Article  CAS  PubMed  Google Scholar 

  96. Mitra P, Maceyka M, Payne SG et al. Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett 2007; 581:735–40.

    Article  CAS  PubMed  Google Scholar 

  97. Graf C, Rovina P, Tauzin L et al. Enhanced ceramide-induced apoptosis in ceramide kinase overexpressing cells. Biochem Biophys Res Commun 2007; 354:309–14.

    Article  CAS  PubMed  Google Scholar 

  98. Gómez-Muñoz A, Kong J, Salh B et al. Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 2003; 539:56–60.

    Article  PubMed  CAS  Google Scholar 

  99. Gómez-Muñoz A, Kong JY, Parhar K et al. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett 2005; 579:3744–50.

    Article  PubMed  CAS  Google Scholar 

  100. Testai FD, Landek MA, Goswami R et al. Acid sphingomyelinase and inhibition by phosphate ion: role of inhibition by phosphatidyl-myo-inositol 3,4,5-triphosphate in oligodendrocyte cell signaling. J Neurochem 2004; 89:636–44.

    Article  CAS  PubMed  Google Scholar 

  101. Scheid MP, Huber M, Damen JE et al. Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J Biol Chem 2002; 277:9027–35.

    Article  CAS  PubMed  Google Scholar 

  102. Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 2003; 546:108–12.

    Article  CAS  PubMed  Google Scholar 

  103. Filippa N, Sable CL, Filloux C et al. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 1999; 19:4989–5000.

    CAS  PubMed  Google Scholar 

  104. Sable CL, Filippa N, Hemmings B et al. cAMP stimulates protein kinase B in a Wortmannin-insensitive manner. FEBS Lett 1997; 409:253–7.

    Article  CAS  PubMed  Google Scholar 

  105. Van Kolen K, Gilany K, Moens L et al. P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 2006; 18:1169–81.

    Article  PubMed  CAS  Google Scholar 

  106. Gómez-Muñoz A, Waggoner DW, O’Brien L et al. Interaction of ceramides, sphingosine and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J Biol Chem 1995; 270:26318–25.

    Article  PubMed  Google Scholar 

  107. Gómez-Muñoz A, Aboulsalham A, Kikuchi Y et al. Role of Sphingolipids in Regulating the Phospholipase D Pathway and Cell Division in Sphingolipid-mediated Signal Transduction (ed. Hannun YA) (New York, RG Landes Co 1997; 103–120).

    Google Scholar 

  108. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454:428–35.

    Article  CAS  PubMed  Google Scholar 

  109. Serhan CN, Haeggstrom JZ, Leslie CC. Lipid mediator networks in cell signaling: update and impact of cytokines. Faseb J 1996; 10:1147–58.

    CAS  PubMed  Google Scholar 

  110. Manna SK, Aggarwal BB. IL-13 suppresses TNF-induced activation of nuclear factor-kappa B, activation protein-1 and apoptosis. J Immunol 1998; 161:2863–72.

    CAS  PubMed  Google Scholar 

  111. Newton R, Hart L, Chung KF et al. Ceramide induction of COX-2 and PGE(2) in pulmonary A549 cells does not involve activation of NF-kappaB. Biochem Biophys Res Commun 2000; 277:675–9.

    Article  CAS  PubMed  Google Scholar 

  112. Hayakawa M, Jayadev S, Tsujimoto M et al. Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem Biophys Res Commun 1996; 220:681–6.

    Article  CAS  PubMed  Google Scholar 

  113. Masini E, Giannini L, Nistri S et al. Ceramide: a key signaling molecule in a Guinea pig model of allergic asthmatic response and airway inflammation. J Pharmacol Exp Ther 2008; 324:548–57.

    Article  CAS  PubMed  Google Scholar 

  114. Prasad VV, Nithipatikom K, Harder DR. Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int 2008; 53:220–9.

    Article  CAS  PubMed  Google Scholar 

  115. Goggel R, Winoto-Morbach S, Vielhaber G et al. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 2004; 10:155–60.

    Article  PubMed  CAS  Google Scholar 

  116. Wijesinghe DS, Subramanian P, Lamour NF et al. The chain length specificity for the activation of group IV cytosolic phospholipase A2 by ceramide-1-phosphate. Use of the dodecane delivery system for determining lipid-specific effects. J Lipid Res 2008; In press.

    Google Scholar 

  117. Wijesinghe DS, Lamour NF, Gómez-Muñoz A et al. Ceramide kinase and ceramide-1-phosphate. Methods Enzymol 2007; 434:265–92.

    Article  CAS  PubMed  Google Scholar 

  118. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008; 451:904–13.

    Article  CAS  PubMed  Google Scholar 

  119. Hendriks JJ, Teunissen CE, de Vries HE et al. Macrophages and neurodegeneration. Brain Res Rev 2005; 48:185–95.

    Article  CAS  PubMed  Google Scholar 

  120. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell 2006; 124:263–6.

    Article  CAS  PubMed  Google Scholar 

  121. Granado MH, Gangoiti P, Ouro A et al. Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell Signal 2008; 21:405–12.

    Article  PubMed  CAS  Google Scholar 

  122. Goldsmith M, Avni D, Levy-Rimler G et al. A ceramide-1-phosphate analogue, PCERA-1, simultaneously suppresses tumour necrosis factor-alpha and induces interleukin-10 production in activated macrophages. Immunology 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gómez-Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gómez-Muñoz, A., Gangoiti, P., Granado, M.H., Arana, L., Ouro, A. (2010). Ceramide-1-Phosphate in Cell Survival and Inflammatory Signaling. In: Chalfant, C., Poeta, M.D. (eds) Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, vol 688. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6741-1_8

Download citation

Publish with us

Policies and ethics