Skip to main content

Anatomical Reference Frames for Long Bones: Biomechanical Applications

  • Chapter
  • First Online:
Handbook of Anthropometry

Abstract

The definition of anatomical reference frames is necessary both for in vitro biomechanical testing, and for in vivo human movement analyses. Different reference frames have been proposed in the literature, for the different applications. Reference frames for in vivo use must rely on anatomical landmarks that can be accessed non-invasively in living subjects. This limits the operator to certain regions of the bone segments, and possibly to anatomical landmarks that are scarcely reproducible. Conversely, when the bone is fully accessible in vitro, direct measurements are possible of diameters, lengths, and angles. This enables the selection of anatomical reference planes that rely upon anatomical landmarks that are better reproducible. In this section, anatomical reference frames are discussed for the most important long bones of the human skeleton: femur, tibia, fibula, metatarsal bones, humerus, radius, ulna, metacarpal bones, and phalanges. The different reference frames proposed for each bone segment are discussed: this includes the guidelines proposed by the Standardization and Terminology Committee of the International Society of Biomechanics (ISB) for in vivo movement analysis, and also reference frames proposed by different authors for in vitro testing. Optimal reference frames are proposed for each bone segments. Detailed guidelines (including suggested materials and methods) are provided to correctly identify the anatomical landmarks and the anatomical frames. For each bone segment, an estimate of the intra-operator repeatability (i.e. when the same operator repeatedly identifies the reference frame on the same specimen) and of the inter-operator repeatability (i.e. when different operators identify the reference frame on the same specimen) is reported for the recommended reference frame. This confirms the reliability of the approach proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

BLF:

Biomechanical length of the femur

BLH:

Biomechanical length of the humerus

BLR:

Biomechanical length of the radius

BLT:

Biomechanical length of the tibia-fibula complex

BLU:

Biomechanical length of the ulna

CLT:

Landmark for the humerus: center of the most lateral part of the humeral trochlea

CMT:

Landmark for the humerus: center of the most medial part of the humeral trochlea

CT:

Computed tomography

DFL:

Landmark for the femur: on the distal femoral diaphysis in the center of the concavity present on the anterior surface, proximal to the lateral epicondyle

HF:

Landmark for the shank: apex of the head of the fibula

IM:

Landmark for the shank: midpoint of the line joining MM and LM (coincides with MPM)

ISB:

International Society of Biomechanics

LC:

Landmark for the shank: most medial point on the edge of the lateral tibial condyle

LFC:

Landmark for the femur: posterior side of the lateral femoral condyle

LHDL:

Living Human Digital Library

LM:

Landmark for the shank: apex of the lateral malleolus

LTC:

Landmark for the tibia: centre of the lateral tibial condylar plateau

MC:

Landmark for the shank: most medial point on the edge of the medial tibial condyle

MFC:

Landmark for the femur: posterior side of the medial femoral condyle

MM:

Landmark for the shank: apex of the medial malleolus

MP:

Landmark for the tibia: medial point between MTC and LTC

MPM:

Landmark for the shank: midpoint of the line joining MM and LM (coincides with IM)

MTC:

Landmark for the tibia: centre of the medial tibial condylar plateau

PFL:

Landmark for the femur: on the proximal diaphysis, center of a flat region immediately distal to the lesser trochanter

SP:

Landmark for the radius: most distal point of the styloid process

TAS:

Landmark for the tibia: centre of the talar articulation

TN1, TN2, TN3:

Landmark for the ulna: three points in the trochlear notch in the proximal ulna

TT:

Landmark for the shank: tibial tuberosity

UN:

Landmark for the radius: central point of the ulnar notch

VPH-OP:

Virtual Physiological Osteoporotic Human

References

  • Backman, S., 1957. The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol Suppl 1–166.

    Google Scholar 

  • Cappozzo, A., Catani, F., Della Croce, U., Leardini, A., 1995. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10, 171–178.

    Article  Google Scholar 

  • Conti, G., Cristofolini, L., Juszczyk, M., Leardini, A., Viceconti, M., 2008. Comparison of three standard anatomical reference frames for the tibia-fibula complex. J Biomech 41, 3384–3389.

    Article  PubMed  Google Scholar 

  • Cristofolini, L., 1997. A critical analysis of stress shielding evaluation of hip prostheses. Critical Reviews in Biomedical Engineering 25, 409–483.

    Article  PubMed  CAS  Google Scholar 

  • Cristofolini, L., Viceconti, M., 2000. Mechanical validation of whole bone composite tibia models. J Biomech 33, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Cristofolini, L., Erani, P., Savigni, P., Bordini, B., Viceconti, M., 2007a. Preclinical assessment of the long-term endurance of cemented hip stems. Part 2: in-vitro and ex-vivo fatigue damage of the cement mantle. Proc Inst Mech Eng [H] 221, 585–599.

    Article  PubMed  CAS  Google Scholar 

  • Cristofolini, L., Juszczyk, M., Martelli, S., Taddei, F., Viceconti, M., 2007b. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40, 2837–2845.

    Article  PubMed  Google Scholar 

  • Cristofolini, L., Saponara Teutonico, A., Savigni, P., Erani, P., Viceconti, M., 2007. Preclinical assessment of the long-term endurance of cemented hip stems. Part 1: effect of daily activities--a comparison of two load histories. Proc Inst Mech Eng [H] 221, 569–584.

    PubMed  CAS  Google Scholar 

  • Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S., Viceconti, M., 2008. Multiscale investigation of the functional properties of the human femur. Philos Transact A Math Phys Eng Sci 366, 3319-3341.

    PubMed  CAS  Google Scholar 

  • Cristofolini, L., Juszczyk, M., Taddei, F., Viceconti, M., 2009. Strain distribution in the proximal human femoral metaphysis. Proc Inst Mech Eng [H] 223, 273–288.

    Article  PubMed  CAS  Google Scholar 

  • Currey, J.D., 1982. Bone as a mechanical structure. In: Biomechanics - Principles and applications. Huiskes, R., van Campen, D.H., de Wijn, J.R. (Eds). Martinus Nijhoff Publishers, pp. 75–85.

    Google Scholar 

  • Della Croce, U., Camomilla, V., Leardini, A., Cappozzo, A., 2003. Femoral anatomical frame: assessment of various definitions. Med Eng Phys 25, 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A., 2005. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21, 226–237.

    Article  PubMed  Google Scholar 

  • Dunlap, J.T., Chong, A.C., Lucas, G.L., Cooke, F.W., 2008. Structural properties of a novel design of composite analogue humeri models. Ann Biomed Eng 36, 1922–1926.

    Article  PubMed  Google Scholar 

  • Edmonds, J.L., Bowers, K.W., Toby, E.B., Jayaraman, G., Girod, D.A., 2000. Torsional strength of the radius after osteofasciocutaneous free flap harvest with and without primary bone plating. Otolaryngol Head Neck Surg 123, 400–408.

    Article  PubMed  CAS  Google Scholar 

  • Fung YC. Bone and cartilage. In: Biomechanics: mechanical properties of living tissues. New York: Springer; 1980. p. 383–415.

    Google Scholar 

  • Gray, H.A., Taddei, F., Zavatsky, A.B., Cristofolini, L., Gill, H.S., 2008. Experimental validation of a finite element model of a human cadaveric tibia. J. Biomech. Engineering 130, 031016–031011 (031019 pages).

    Article  PubMed  Google Scholar 

  • Gray, H.A., Zavatsky, A.B., Taddei, F., Cristofolini, L., Gill, H.S., 2007. Experimental validation of a finite element model of a composite tibia. Proc Inst Mech Eng [H] 221, 315–324.

    PubMed  CAS  Google Scholar 

  • Grood, E.S., Suntay, W.J., 1983. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 105, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Harman, M.K., Toni, A., Cristofolini, L., Viceconti, M., 1995. Initial stability of uncemented hip stems: an in-vitro protocol to measure torsional interface motion. Med Eng Phys 17, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Heiner, A.D., Brown, T.D., 2001. Structural properties of a new design composite replicate femurs and tibias. J Biomech. 34, 773–781.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, E.S., Patwardhan, A.G., Meade, K.P., Light, T.R., Martin, W.R., 1993. Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna. J Biomech 26, 1307–1318.

    Article  PubMed  CAS  Google Scholar 

  • ISB, 1995. Recommendations for standardization in the reporting of kinematic data. International Society for Biomechanics (ISB): Standardization and Terminology in Biomechanics Committee 1–6.

    Google Scholar 

  • Juszczyk, M. (2009) PhD Thesis. “Human long bones in-vitro biomechanical characterization”. Thesis, Engineering Faculty, University of Bologna, Bologna.

    Google Scholar 

  • Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., Benedetti, M.G., 2007. A new anatomically based protocol for gait analysis in children. Gait Posture 26, 560–571.

    Article  PubMed  Google Scholar 

  • O’Connor, J.J., 1992. Load simulation problems in model testing. In: Strain measurement biomechanics. Miles, A.W., Tanner, K.E. (Eds). Chapman & Hall, London, pp. 14–38.

    Google Scholar 

  • Ruff, C.B., 1981. Structural changes in the lower limb bones with aging at Pecos Pueblo. Thesis, Dissertation in Anthropology Presented to the Graduate Faculties, University of Pennsylvania.

    Google Scholar 

  • Ruff, C.B., Hayes, W.C., 1983. Cross-sectional geometry at Pecos Pueblo femora and tibiae - A biomechanical investigation: I. method and general patterns of variation. American Journal of Physical Anthropology 60, 359–381.

    Article  PubMed  CAS  Google Scholar 

  • Salvia, P., Jan, S.V., Crouan, A., Vanderkerken, L., Moiseev, F., Sholukha, V., Mahieu, C., Snoeck, O., Rooze, M., 2009. Precision of shoulder anatomical landmark calibration by two approaches: a CAST-like protocol and a new anatomical palpator method. Gait Posture 29, 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Schileo, E., Taddei, F., Cristofolini, L., Viceconti, M., 2008. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41, 356–367.

    Article  PubMed  Google Scholar 

  • Schileo, E., Taddei, F., Helgason, B., Pallini, F., Cristofolini, L., Viceconti, M., 2006. Accurate prediction of strain values from subject specific finite element models of long bones. J Biomech 39, S12.

    Article  Google Scholar 

  • Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., Viceconti, M., 2007. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40, 2982–2989.

    Article  PubMed  Google Scholar 

  • Sholukha, V., Van Sint Jan, S., Snoeck, O., Salvia, P., Moiseev, F., Rooze, M., 2009. Prediction of joint center location by customizable multiple regressions: application to clavicle, scapula and humerus. J Biomech 42, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J.R., 1997. Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, CA, USA.

    Google Scholar 

  • Thewlis, D., Richards, J., Bower, J., 2008. Discrepancies in knee joint moments using common anatomical frames. J. Applied Biomechanics 24, 185–190.

    PubMed  Google Scholar 

  • Van Sint Jan, S., 2007. Color Atlas of Skeletal Landmark Definitions: Guidelines for Reproducible Manual and Virtual Palpations. Elsevier - Churchill Livingstone, Philadelphia, PA, USA (ISBN-13: 978-0-443-10315-5).

    Google Scholar 

  • Van Sint Jan, S., Della Croce, U., 2005. Identifying the location of human skeletal landmarks: why standardized definitions are necessary--a proposal. Clin Biomech (Bristol, Avon) 20, 659–660.

    Article  Google Scholar 

  • Viceconti, M., Taddei, F., Van Sint Jan, S., Leardini, A., Cristofolini, L., Stea, S., Baruffaldi, F., Baleani, M., 2008. Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin Biomech (Bristol, Avon) 28, 845–852.

    Article  Google Scholar 

  • Waide, V., Cristofolini, L., Toni, A., 2001. A CAD-CAM methodology to produce bone-remodelled composite femurs for preclinical investigations. Proc Inst Mech Eng [H] 215, 459–469.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Cavanagh, P.R., 1995. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 28, 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35, 543–548.

    Article  PubMed  Google Scholar 

  • Wu, G., van der Helm, F.C., Veeger, H.E., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B., 2005. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech 38, 981–992..

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Massimiliano Baleani, Mateusz Juszczyk, and Serge Van Sint Jan for the stimulating discussions. Giorgia Conti, Valentina Danesi, and Paolo Erani greatly contributed to the development of the reference frames. Andrea Malandrino, Doriana Lionetti, and Caroline Öhman patiently contributed to the inter-operator variability assessment. Luigi Lena provided the artwork. Daniel Espino carefully revised the script.

The European Community co-funded this study (grants: IST-2004-026932 “Living Human Digital Library - LHDL” and #223865 “The Osteoporotic Virtual Physiological Human – VPHOP”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cristofolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cristofolini, L. (2012). Anatomical Reference Frames for Long Bones: Biomechanical Applications. In: Preedy, V. (eds) Handbook of Anthropometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1788-1_184

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1788-1_184

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1787-4

  • Online ISBN: 978-1-4419-1788-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics