Skip to main content

Regeneration After CNS Lesion: Help from the Immune System?

  • Chapter
  • First Online:
Book cover New Aspects of Axonal Structure and Function
  • 469 Accesses

Abstract

Traumatic injury to the central nervous system (CNS) is followed by an inflammatory response, which is characterized by at least two very distinct phases: First, a short highly controlled burst of acute inflammatory defense and second, a long-term remodeling phase. Similarly, at least one or two phases of T-cell infiltration have been described in CNS trauma models suggesting differential functions of T cells in the acute and remodeling phase. Thus, the role of T cells in CNS trauma is still controversial. Interestingly, vaccine strategies and injections of autoimmune T cells led to both exacerbation of CNS damage after trauma in some models and improvement in others. Here, we suggest that specific subtypes of T cells may be responsible for either the respective beneficial or detrimental effects in the biphasic response of the CNS to trauma. There is increasing evidence that specific subtypes of T cells, in particular T-helper cells type 2 (Th2 cells), may play a beneficial role in the context of CNS lesions by promoting axon outgrowth and – at the same time – protecting from self-reactive CNS inflammation. CNS injury-induced systemic immunosuppression results in a systemic shift toward a Th2 cytokine pattern, which impairs cellular immune responses suggesting a protective function against autoimmunity. Treatment with potent inducers of a Th2 switch such as glatiramer acetate or statins, as well as vaccination strategies using Th2-inducing adjuvants for immunization results in increased neuroprotection and regeneration. However, a systematic analysis of effects of the different T-helper cell subpopulations in the acute and chronic phases after CNS trauma is still desperately needed to develop concepts to explain contradictory findings about beneficial or detrimental T-cell effects in CNS injury and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YH, Lee G, Kang SK (2006) Molecular insights of the injured lesions of rat spinal cords: Inflammation, apoptosis, and cell survival. Biochem Biophys Res Commun 348:560–570

    Article  PubMed  CAS  Google Scholar 

  • Andersson PB, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48:169–186

    Article  PubMed  CAS  Google Scholar 

  • Angelov DN et al (2003) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 100:4790–4795

    Article  PubMed  CAS  Google Scholar 

  • Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG (2006) Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem 99:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Asher RA et al (2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 22:2225–2236

    PubMed  CAS  Google Scholar 

  • Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930

    PubMed  CAS  Google Scholar 

  • Bank U et al (1999) Selective proteolytic cleavage of IL-2 receptor and IL-6 receptor ligand binding chains by neutrophil-derived serine proteases at foci of inflammation. J Interferon Cytokine Res 19:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Bank U, Kupper B, Reinhold D, Hoffmann T, Ansorge S (1999) Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 461:235–240

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I (2005) Failed central nervous system regeneration: a downside of immune privilege? Neuromolecular Med 7:217–228

    Article  PubMed  CAS  Google Scholar 

  • Benner EJ et al (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440

    Article  PubMed  CAS  Google Scholar 

  • Biedermann T, Rocken M, Carballido JM (2004) TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc 9:5–14

    Article  PubMed  CAS  Google Scholar 

  • Bishop GM, Robinson SR, Smith MA, Perry G, Atwood CS (2002) Call for Elan to publish Alzheimer’s trial details. Nature 416:677

    Article  PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  PubMed  CAS  Google Scholar 

  • Bradbury EJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  CAS  Google Scholar 

  • Buchli AD, Schwab ME (2005) Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med 37:556–567

    Article  PubMed  CAS  Google Scholar 

  • Bush TG et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  PubMed  CAS  Google Scholar 

  • Bye N et al (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol204:220–233

    Article  PubMed  CAS  Google Scholar 

  • Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–2185

    Article  PubMed  CAS  Google Scholar 

  • Camand E, Morel MP, Faissner A, Sotelo C, Dusart I (2004) Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur J Neurosci 20:1161–1176

    Article  PubMed  Google Scholar 

  • Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC (2002) Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 83:432–441

    Article  PubMed  CAS  Google Scholar 

  • Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65

    Article  PubMed  Google Scholar 

  • Caruso C et al (1996) Cytokine production pathway in the elderly. Immunol Res 15:84–90

    Article  PubMed  CAS  Google Scholar 

  • Castle S, Uyemura K, Wong W, Modlin R, Effros R (1997) Evidence of enhanced type 2 immune response and impaired upregulation of a type 1 response in frail elderly nursing home residents. Mech Ageing Dev 94:7–16

    Article  PubMed  CAS  Google Scholar 

  • Check E (2002) Nerve inflammation halts trial for Alzheimer’s drug. Nature 415:462

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Pickard JD, Harris NG (2003) Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 182:87–102

    Article  PubMed  CAS  Google Scholar 

  • Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244

    Article  PubMed  CAS  Google Scholar 

  • Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma 11:499–506

    Article  PubMed  CAS  Google Scholar 

  • Dayan M et al (2000) Effect of aging on cytokine production in normal and experimental systemic lupus erythematosus-afflicted mice. Exp Gerontol 35:225–236

    Article  PubMed  CAS  Google Scholar 

  • Deboy CA et al (2006) Immune-mediated neuroprotection of axotomized mouse facial motoneurons is dependent on the IL-4/STAT6 signaling pathway in CD4(+) T cells. Exp Neurol 201:212–224

    Article  PubMed  CAS  Google Scholar 

  • Del Rio JA et al (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74

    Article  PubMed  CAS  Google Scholar 

  • Dinkel K, Dhabhar FS, Sapolsky RM (2004) Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proc Natl Acad Sci USA 101:331–336

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U et al (2007) Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38:770–773

    Article  PubMed  Google Scholar 

  • Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  PubMed  CAS  Google Scholar 

  • Dou CL, Levine JM (1994) Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J Neurosci 14:7616–7628

    PubMed  CAS  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495

    Article  PubMed  CAS  Google Scholar 

  • Engwerda CR, Fox BS, Handwerger BS (1996) Cytokine production by T lymphocytes from young and aged mice. J Immunol 156:3621–3630

    PubMed  CAS  Google Scholar 

  • Ernst DN, Weigle WO, Hobbs MV (1993) Aging and lymphokine production by T cell subsets. Stem Cells 11:487–498

    Article  PubMed  CAS  Google Scholar 

  • Eskes C, Honegger P, Juillerat-Jeanneret L, Monnet-Tschudi F (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 37:43–52

    Article  PubMed  Google Scholar 

  • Fabry Z, Ling C, Swartz K, Fee, D (2008) Innate and adaptive immune responses in the CNS: role of innate mediators, T cells, and the complement system in traumatic injuries of the CNS. In: Ibarra A (ed) The role of immune cells in neurodegenerative diseases. Research Signpost, Kerala, pp 43–68

    Google Scholar 

  • Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fee D et al (2003) Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J Neuroimmunol 136:54–66

    Article  PubMed  CAS  Google Scholar 

  • Fisher J et al (2001) Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 21:136–142

    PubMed  CAS  Google Scholar 

  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    PubMed  CAS  Google Scholar 

  • Fraidakis MJ, Kiyotani T, Pernold K, Bergstrom J, Olson L (2007) Recovery from spinal cord injury in tumor necrosis factor-alpha, signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 null mice. Neuroreport 18:185–189

    Article  PubMed  CAS  Google Scholar 

  • Franzen R et al (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J Neurosci Res 51:316–327

    Article  PubMed  CAS  Google Scholar 

  • Frasca D et al (1997) Regulation of cytokine production in aging: use of recombinant cytokines to upregulate mitogen-stimulated spleen cells. Mech Ageing Dev 93:157–169

    Article  PubMed  CAS  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  PubMed  CAS  Google Scholar 

  • Gibbons HM, Dragunow M (2006) Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res 1084:1–15

    Article  PubMed  CAS  Google Scholar 

  • Gimsa U, Peter SV, Lehmann K, Bechmann I, Nitsch R (2000) Axonal damage induced by invading T cells in organotypic central nervous system tissue in vitro: involvement of microglial cells. Brain Pathol 10:365–377

    Article  PubMed  CAS  Google Scholar 

  • Gimsa U, Wolf SA, Haas D, Bechmann I, Nitsch R (2001) Th2 cells support intrinsic anti-inflammatory properties of the brain. J Neuroimmunol 119:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ginaldi L et al (1999) The immune system in the elderly: III. Innate immunity. Immunol Res 20:117–126

    Article  PubMed  CAS  Google Scholar 

  • Golz G et al (2006) The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur J Neurosci 24:2721–2730

    Article  PubMed  Google Scholar 

  • Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397

    Article  PubMed  CAS  Google Scholar 

  • Hakamada-Taguchi R et al (2003) Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ Res 93:948–956

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg H et al (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  • Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW (2004) The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127:813–820

    Article  PubMed  CAS  Google Scholar 

  • Hang CH, Shi JX, Li JS, Wu W, Yin HX (2005) Concomitant upregulation of nuclear factor-kB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurol India 53:312–317

    Article  PubMed  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  • Hauben E et al (2001) Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci USA 98:15173–12178

    Google Scholar 

  • He Z, Koprivica V (2004) The Nogo signaling pathway for regeneration block. Annu Rev Neurosci 27:341–368

    Article  PubMed  CAS  Google Scholar 

  • He BP, Wen W, Strong MJ (2002) Activated microglia (BV-2) facilitation of TNF-alpha-mediated motor neuron death in vitro. J Neuroimmunol 128:31–38

    Article  PubMed  CAS  Google Scholar 

  • Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184:100–112

    Article  PubMed  CAS  Google Scholar 

  • Hendrix S, Peters EM (2007) Neuronal plasticity and neuroregeneration in the skin – The role of inflammation. J Neuroimmunol 184:113–126

    Article  PubMed  CAS  Google Scholar 

  • Herx LM, Yong VW (2001) Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol 60:961–971

    PubMed  CAS  Google Scholar 

  • Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–137

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci USA 84:2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg DL et al (1998) Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J Neuroimmunol 89:88–96

    Article  PubMed  CAS  Google Scholar 

  • Holmin S, Mathiesen T, Shetye J, Biberfeld P (1995) Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir (Wien) 132:110–119

    Article  CAS  Google Scholar 

  • Huang DW, McKerracher L, Braun PE, David S (1999) A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24:639–647

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Norenberg W, Gebicke-Haerter PJ (1996) Molecular mechanisms of microglial activation. B. Voltage- and purinoceptor-operated channels in microglia. Neurochem Int 29:13–24

    Article  PubMed  CAS  Google Scholar 

  • Janus C et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    Article  PubMed  CAS  Google Scholar 

  • Jones TB et al (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22:2690–2700

    PubMed  CAS  Google Scholar 

  • Jones TB et al (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 24:3752–3761

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MH, Schindler U, Smiley ST, Grusby MJ (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4:313–319

    Article  PubMed  CAS  Google Scholar 

  • Kariv I, Ferguson FG, Confer FL (1992) Age- and strain-related differences in murine spleen cell responses to different activation signals. Cell Immunol 140:67–80

    Article  PubMed  CAS  Google Scholar 

  • Kawano H, Li HP, Sango K, Kawamura K, Raisman G (2005) Inhibition of collagen synthesis overrides the age-related failure of regeneration of nigrostriatal dopaminergic axons. J Neurosci Res 80:191–202

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed  CAS  Google Scholar 

  • Kil K et al (1999) T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J Neuroimmunol 98:201–207

    Article  PubMed  CAS  Google Scholar 

  • Kipnis J et al (2002) Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J Neuroimmunol 130:78–85

    Article  PubMed  CAS  Google Scholar 

  • Kivisakk P et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 100:8389–8394

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Cinader B (1990) Polymorphism of age-related changes in interleukin (IL) production: differential changes of T helper subpopulations, synthesizing IL 2, IL 3 and IL 4. Eur J Immunol 20:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Kurpius D, Nolley EP, Dailey ME (2007) Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia 55:873–884

    Article  PubMed  Google Scholar 

  • Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Liesi P, Kauppila T (2002) Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Exp Neurol 173:31–45

    Article  PubMed  CAS  Google Scholar 

  • Liew FY (2002) T(H)1 and T(H)2 cells: a historical perspective. Nat Rev Immunol 2:55–60

    Article  PubMed  CAS  Google Scholar 

  • Lu D et al (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    Article  PubMed  Google Scholar 

  • Ma M, Wei P, Wei T, Ransohoff RM, Jakeman LB (2004) Enhanced axonal growth into a spinal cord contusion injury site in a strain of mouse (129X1/SvJ) with a diminished inflammatory response. J Comp Neurol 474:469–486

    Article  PubMed  Google Scholar 

  • McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  PubMed  CAS  Google Scholar 

  • Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786

    Article  PubMed  CAS  Google Scholar 

  • Merkler D et al (2003) Rapid induction of autoantibodies against Nogo-A and MOG in the absence of an encephalitogenic T cell response: implication for immunotherapeutic approaches in neurological diseases. Faseb J 17:2275–2277

    PubMed  CAS  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  • Moalem G et al (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Fauvarque C et al (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23:9229–9239

    PubMed  CAS  Google Scholar 

  • Morgan D et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  • Munch G et al (2003) Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res 150:1–8

    PubMed  Google Scholar 

  • Nagata K, Takei N, Nakajima K, Saito H, Kohsaka S (1993) Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J Neurosci Res 34:357–363

    Article  PubMed  CAS  Google Scholar 

  • Niclou SP, Franssen EH, Ehlert EM, Taniguchi M, Verhaagen J (2003) Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth. Mol Cell Neurosci 24:902–912

    Article  PubMed  CAS  Google Scholar 

  • Nicole O et al (2005) Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J Neurosci 25:4319–4329

    Article  PubMed  CAS  Google Scholar 

  • Olsson T et al (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13:117–126

    Article  PubMed  CAS  Google Scholar 

  • Olsson T et al (1993) Autoreactive T and B cell responses to myelin antigens after diagnostic sural nerve biopsy. J Neurol Sci 117:130–139

    Article  PubMed  CAS  Google Scholar 

  • Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340–350

    Article  PubMed  CAS  Google Scholar 

  • Parish CR (1972) The relationship between humoral and cell-mediated immunity. Transplant Rev 13:35–66

    PubMed  CAS  Google Scholar 

  • Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:11S–16S

    Article  PubMed  CAS  Google Scholar 

  • Parronchi P et al (1991) Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 88:4538–4542

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG et al (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Hickey WF (2001) Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol 60:676–685

    PubMed  CAS  Google Scholar 

  • Popovich PG, Jones TB (2003) Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 24:13–17

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Longbrake EE. (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Stokes BT, Whitacre CC. (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45:349–363

    Article  PubMed  CAS  Google Scholar 

  • Prass K et al. (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  PubMed  CAS  Google Scholar 

  • Quintana A et al (2005) Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 82:701–716

    Article  PubMed  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neursci 20:570–577

    Article  CAS  Google Scholar 

  • Rostworowski M, Balasingam V, Chabot S, Owens T, Yong VW (1997) Astrogliosis in the neonatal and adult murine brain post-trauma: elevation of inflammatory cytokines and the lack of requirement for endogenous interferon-gamma. J Neurosci 17:3664–3674

    PubMed  CAS  Google Scholar 

  • Sandmand M et al (2002) Is ageing associated with a shift in the balance between Type 1 and Type 2 cytokines in humans? Clin Exp Immunol 127:107–114

    Article  PubMed  CAS  Google Scholar 

  • Schenk D et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  PubMed  CAS  Google Scholar 

  • Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113 (Pt 5), 807–816

    PubMed  CAS  Google Scholar 

  • Schneider LA, Schlenner SM, Feyerabend TB, Wunderlin M, Rodewald HR (2007) Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med 204:2629–2639

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11:3648–3658

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Schneider R, Berman MA, Perry VH, Schwab ME (1997) Lymphocyte recruitment following spinal cord injury in mice is altered by prior viral exposure. Eur J Neurosci 9:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M (2005) T-cell-based vaccination against neurodegeneration: a new therapeutic approach. Retina 25:S33–S35

    Article  PubMed  Google Scholar 

  • Schwartz M, Cohen I, Lazarov-Spiegler O, Moalem G, Yoles E (1999) The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair. J Mol Med 77:713–717

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Ziv Y (2008) Immunity to self and self-maintenance: a unified theory of brain pathologies. Trends Immunol 29:211–219

    Article  PubMed  CAS  Google Scholar 

  • Segal R et al (1997) Effect of aging on cytokine production in normal and experimental systemic lupus erythematosus afflicted mice. Mech Ageing Dev 96:47–58

    Article  PubMed  CAS  Google Scholar 

  • Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VM, Jones KJ (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (SCID) mice. J Neurosci 19:RC7

    Google Scholar 

  • Shearer GM (1997) Th1/Th2 changes in aging. Mech Ageing Dev 94:1–5

    Article  PubMed  CAS  Google Scholar 

  • Shechter R, Ziv Y, Schwartz M (2007) New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells 25:2277–2282

    Article  PubMed  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  • Sicotte M et al (2003) Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci 23:251–263

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462:223–240

    Article  PubMed  Google Scholar 

  • Stichel CC et al (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 11:632–646

    Article  PubMed  CAS  Google Scholar 

  • Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9

    Article  PubMed  CAS  Google Scholar 

  • Stinissen P, Raus J, Zhang J (1997) Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol 17:33–75

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Davies JE, Davies SJ (2003) Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 71:427–444

    Article  PubMed  CAS  Google Scholar 

  • Taoka Y et al (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Taoka Y, Okajima K, Murakami K, Johno M, Naruo M (1998) Role of neutrophil elastase in compression-induced spinal cord injury in rats. Brain Res 799:264–269

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Rauvala H, Gahmberg CG (2009) Neuronal regulation of immune responses in the central nervous system. Trends Immunol 30:91–99

    Article  PubMed  CAS  Google Scholar 

  • Tonai T et al (2001) A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem 78:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Vela JM, Yanez A, Gonzalez B, Castellano B (2002) Time course of proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. J Neurotrauma 19:1503–1520

    Article  PubMed  Google Scholar 

  • Wang WZ et al (1992) Myelin antigen reactive T cells in cerebrovascular diseases. Clin Exp Immunol 88:157–162

    Article  PubMed  CAS  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207–214

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JR et al (2005) Unraveling thrombin’s true microglia-activating potential: markedly disparate profiles of pharmaceutical-grade and commercial-grade thrombin preparations. J Neurochem 95:1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Sun D, Oropeza-Wekerle RL, Meyermann R (1987) Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J Exp Biol 132:43–57

    PubMed  CAS  Google Scholar 

  • Whalen MJ et al (1999) Neutrophils do not mediate blood-brain barrier permeability early after controlled cortical impact in rats. J Neurotrauma 16:583–594

    Article  PubMed  CAS  Google Scholar 

  • Wierenga EA et al (1990) Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients. J Immunol 144:4651–4656

    PubMed  CAS  Google Scholar 

  • Wirenfeldt M et al (2005) Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 82:507–514

    Article  PubMed  CAS  Google Scholar 

  • Wolf SA et al (2002) Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 133:72–80

    Article  PubMed  CAS  Google Scholar 

  • Youssef S et al (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420:78–84

    Article  PubMed  CAS  Google Scholar 

  • Zehntner SP et al (2005) Neutrophils that infiltrate the central nervous system regulate T cell responses. J Immunol 174:5124–5131

    PubMed  CAS  Google Scholar 

  • Ziv Y et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275

    Article  PubMed  CAS  Google Scholar 

  • Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103:13174–13179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hendrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hendrix, S., Nitsch, R. (2010). Regeneration After CNS Lesion: Help from the Immune System?. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_11

Download citation

Publish with us

Policies and ethics