Skip to main content

Rational Design of FRET-Based Sensor Proteins

  • Chapter
  • 1140 Accesses

Part of the book series: Reviews in Fluorescence 2008 ((RFLU,volume 2008))

Abstract

Real-time imaging of molecular events inside living cells is important for understanding the basis of physiological processes and diseases. Genetically encoded sensors that use fluorescence resonance energy transfer (FRET) between two fluorescent proteins are attractive in this respect because they do not require cell-invasive procedures, can be targeted to different locations in the cell and are easily adapted through mutagenesis and directed evolution approaches. Most FRET sensors developed so far show a relatively small difference in emission ratio upon activation, which severely limits their application in high throughput cell-based screening applications. In our work, we try to develop strategies that allow design of FRET-based sensors with intrinsically large ratiometric changes. This rational design approach requires a better understanding and quantitative description of the conformational changes in these fusion proteins. In this chapter, I first discuss some of the key factors and strategies that determine the ratiometric response of FRET sensors, followed by an overview of our recent work in this area. Important concepts that will be discussed are (1) the conformational behavior of flexible peptide linkers to quantitatively describe the dependence of energy transfer on linker length and (2) the control of intramolecular domain interactions using the concept of effective molecular concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.Y. Tsien, Building and breeding molecules to spy on cells and tumors, FEBS Lett. 579, 927–932 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. S.B. Van Engelenburg, and A.E. Palmer, Fluorescent biosensors of protein function, Curr. Opin. Chem. Biol. 12, 60–65 (2008).

    Article  Google Scholar 

  3. A. Miyawaki, Visualization of the spatial and temporal dynamics of intracellular signaling, Dev. Cell 4, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. D.M. Chudakov, S. Lukyanov, and K.A. Lukyanov, Fluorescent proteins as a toolkit for in vivo imaging, Trends Biotechnol. 23, 605–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. N.C. Shaner, G.H. Patterson, and M.W. Davidson, Advances in fluorescent protein technology, J. Cell. Sci. 120, 4247–4260 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. J.R. Lakowicz, Principles of fluorescence spectroscopy 2nd ed. 1999, New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  7. R. Heim, Green fluorescent protein forms for energy transfer, Methods Enzymol. 302, 408–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. M. Mank, and O. Griesbeck, Genetically encoded calcium sensors, Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. G.H. Patterson, D.W. Piston, and B.G. Barisas, Förster distances between green fluorescent protein pairs, Anal. Biochem. 284, 438–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. T.H. Evers, E.M.W.M. Van Dongen, A.C. Faesen, E.W. Meijer, and M. Merkx, Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers, Biochemistry 45, 13183–13192 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. X.H. Shi, J. Basran, H.E. Seward, W. Childs, C.R. Bagshaw, and S.G. Boxer, Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): Quantitative analysis of FRET in YFP dimers, Biochemistry 46, 14403–14417 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. D. Stoner-Ma, E.H. Melief, J. Nappa, K.L. Ronayne, P.J. Tonge, and S.R. Meech, Proton relay reaction in green fluorescent protein (GFP): Polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP, J. Phys. Chem. B 110, 22009–22018 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa, and A. Miyawaki, Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins, Proc. Natl. Acad. Sci. U S A 101, 10554–10559 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. M. Mank, D.F. Reiff, N. Heim, M.W. Friedrich, A. Borst, and O. Griesbeck, A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change, Biophys. J. 90, 1790–1796 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. A.E. Palmer, M. Giacomello, T. Kortemme, S.A. Hires, V. Lev-Ram, D. Baker, and R.Y. Tsien, Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs, Chem. Biol. 13, 521–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. G.S. Baird, D.A. Zacharias, and R.Y. Tsien, Circular permutation and receptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci. U S A 96, 11241–11246 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. A.W. Nguyen and P.S. Daugherty, Evolutionary optimization of fluorescent proteins for intracellular FRET, Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. N.C. Shaner, P.A. Steinbach, and R.Y. Tsien, A guide to choosing fluorescent proteins, Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. X. You, A.W. Nguyen, A. Jabaiah, M.A. Sheff, K.S. Thorn, and P.S. Daugherty, Intracellular protein interaction mapping with FRET hybrids, Proc. Natl. Acad. Sci. U S A 103, 18458–18463 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. T. Ohashi, S.D. Galiacy, G. Briscoe, and H.P. Erickson, An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins, Protein Sci. 16, 1429–1438 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. J.L. Vinkenborg, T.H. Evers, S.W.A. Reulen, E.W. Meijer, and M. Merkx, Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface, ChemBioChem. 8, 1119–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. L.M. Felber, S.M. Cloutier, P. Jichlinski, H.-J. Leisinger, D. Deperthes, C. Kündig, V. Brossard, and T. Kishi, Evaluation of the CFP-substrate-YFP system for protease studies: Advantages and limitations, Biotechniques 36, 878–885 (2004).

    CAS  PubMed  Google Scholar 

  23. R. Arai, H. Ueda, A. Kitayama, N. Kamiya, and T. Nagamune, Design of the linkers which effectively separate domains of a bifunctional fusion protein, Protein. Eng. 14, 529–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. D. Neri, M. Momo, T. Prospero, and G. Winter, High-affinity antigen binding by chelating recombinant antibodies (CRAbs), J. Mol. Biol. 246, 367–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. P.J. Flory, Statistical mechanics of chain molecules. 1969, New York: Interscience Publishers.

    Google Scholar 

  26. O. Kratky and G. Porod, Röntgenuntersuchung gelöster fadenmoleküle, Recl. Trav. Chim. Pays Bas 68, 1106–1122 (1949).

    Article  CAS  Google Scholar 

  27. H.-X. Zhou, Polymer models of protein stability, folding, and interactions, Biochemistry 43, 2141–2154 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. D.A. Brant, W.G. Miller, and P.J. Flory, Conformational energy estimates for statistically coiling polypeptide chains, J. Mol. Biol. 23, 47–65 (1967).

    Article  CAS  Google Scholar 

  29. E.M.W.M. Van Dongen, T.H. Evers, L.M. Dekkers, E.W. Meijer, L.W.J. Klomp, and M. Merkx, Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range, J. Am. Chem. Soc. 129, 3494–3495 (2007).

    Article  PubMed  Google Scholar 

  30. H.-X. Zhou, The affinity-enhancing roles of flexible linkers in two-domain DNA-binding proteins, Biochemistry 40, 15069–15073 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. H.-X. Zhou, Quantitative account of the enhanced affinity of two linked scFvs specific for different epitopes on the same antigen, J. Mol. Biol. 329, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. E.M.W.M. Van Dongen, L.M. Dekkers, K. Spijker, E.W. Meijer, L.W.J. Klomp, and M. Merkx, Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains, J. Am. Chem. Soc. 128, 10754–10762 (2006).

    Article  PubMed  Google Scholar 

  33. A.K. Wernimont, D.L. Huffman, A.L. Lamb, T.V. O'Halloran, and A.C. Rosenzweig, Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins, Nat. Struct. Biol. 7, 766–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. T.H. Evers, M.A.M. Appelhof, P.T.H.M. De Graaf-Heuvelmans, E.W. Meijer, and M. Merkx, Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras, J. Mol. Biol. 374, 411–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. T. Dudev and C. Lim, Principles governing Mg, Ca, and Zn binding and selectivity in proteins, Chem. Rev. 103, 773–787 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Y. Lu, S.M. Berry, and T.D. Pfister, Engineering novel metalloproteins: Design of metal-binding sites into native protein scaffolds, Chem. Rev. 101, 3047–3080 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. K.K. Jensen, L. Martini, and T.W. Schwartz, Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering, Biochemistry 40, 938–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. D.A. Zacharias, J.D. Violin, A.C. Newton, and R.Y. Tsien, Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells, Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. F. Yang, L.G. Moss, and G.N. Phillips Jr., The molecular structure of green fluorescent protein, Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. M.D. Allen, L.M. DiPilato, M. Rahdar, Y.R. Ren, C. Chong, J.O. Liu, and J. Zhang, Reading dynamic kinase activity in living cells for high-throughput screening, ACS Chem. Biol. 1, 371–376 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merkx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merkx, M. (2010). Rational Design of FRET-Based Sensor Proteins. In: Geddes, C.D. (eds) Reviews in Fluorescence 2008. Reviews in Fluorescence 2008, vol 2008. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1260-2_3

Download citation

Publish with us

Policies and ethics