Skip to main content

Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures

  • Chapter
  • First Online:

Abstract

This chapter provides an overview of the current state-of-the-art for experimental collection of microstructural data of grain assemblages and other features of similar scale in three dimensions (3D). The chapter focuses on the use of serial sectioning methods and associated instrumentation, as this is the most widely available and accessible technique for collecting such data for the foreseeable future. Specifically, the chapter describes the serial sectioning methodology in detail, focusing in particular on automated systems that can be used for such experiments, highlights possibilities for including crystallographic and chemical data, provides a concise discussion of the post-experiment handling of the data, and identifies current shortcomings and future development needs for this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alkemper J, Voorhees PW (2001) Quantitative serial sectioning analysis. J Microsc 201:388–394

    Article  MathSciNet  Google Scholar 

  • Bansal RK, Kubis A, Hull R, Fitz-Gerald JM (2006) High-resolution three-dimensional reconstruction: a combined scanning electron microscope and focused ion-beam approach. J Vac Sci Technol B 24(2):554–561

    Article  Google Scholar 

  • DeHoff RT (1983) Quantitiatve serial sectioning analysis: preview. J Microsc 131:259–263

    Google Scholar 

  • Dunn DN, Hull R (1999) Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75:3414–3416

    Article  Google Scholar 

  • Echlin M, Pollock T (2008) Femtosecond Laser Serial Sectioning: A New Tomographic Technique. WCCM8/ECCOMAS

    Google Scholar 

  • Forsman O (1918) Undersökning av rymdstrukturen hos ett kolstå av hypereutectoid sammansättning. Jernkontorets Ann 102:1–30

    Google Scholar 

  • Gonzales RC, Woods RE (2002) Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Char 57:259–273

    Article  Google Scholar 

  • Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part I: statistical characterization. Acta Mater 56:1257–1273

    Google Scholar 

  • Gulsoy EB, Simmons JP, De Graef M (2008) Application of joint histogram and mutual information to registration and data fusion problems in serial sectioning microstructure studies. Scripta Mater 60:381–384

    Google Scholar 

  • Holzer L, Muench B, Wegmann M, Gasser P, Flatt R (2006) FIB-nanotomography of particulate systems—Part I: particle shape and topology of interfaces. J Am Ceram Soc 89:2577–2585

    Article  Google Scholar 

  • Ice GE (2004) X-ray microtomography. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure, pp. 461–464. ASM International, Materials Park, OH

    Google Scholar 

  • Ice GE, Pang JWL, Barabash RI, Puzrev Y (2006) Characterization of three-dimensional crystallographic distributions using polychromatic X-ray microdiffraction. Scritpa Mater 55:57–62

    Article  Google Scholar 

  • Inkson BJ, Mulvihill M, Möbus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater 45:753–758

    Article  Google Scholar 

  • Jorgensen PS, Hansen KV, Larsen R, Bowen JR (2009) A framework for automated segmentation in three dimensions of microstructural tomography data. Ultramicroscopy. doi: 10.1016/j.ultramic.2009.11.013

    Google Scholar 

  • Juul Jensen D, Lauridsen EM, Margulies L, Poulsen HF, Schmidt S, Sorensen HO, Vaughan GBM (2006) X-ray microscopy in four dimensions. Mater Tod 9:18–25

    Article  Google Scholar 

  • Kammer D, Mendoza R, Voorhees PW (2006) Cylindrical domain formation in topologically complex structures. Scripta Mater 55:17–22

    Article  Google Scholar 

  • Kammer D, Voorhees PW (2008) Serial sectioning and phase-field simulations. MRS Bull 33:603–610

    Google Scholar 

  • Kotula PG, Keenan MR, Michael JR (2003) Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool. Microsc Microanal 9:1–17

    Article  Google Scholar 

  • Kotula PG, Keenan MR, Michael JR (2006) Tomographic spectral imaging with multivariate statistical analysis: comprehensive 3D microanalysis. Microsc Microanal 12(1):36–48

    Article  Google Scholar 

  • Konrad J, Zaefferer S, Raabe D (2006) Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater 54:1369–1380

    Article  Google Scholar 

  • Kral M, Spanos G (1999) Three-dimensional analysis of proeutectoid cementite precipitates. Acta Mater 47:711–724

    Article  Google Scholar 

  • Kral MV, Mangan MA, Rosenberg RO, Spanos G (2000) Three-dimensional analysis of microstructures. Mater Charact 45:17–23

    Article  Google Scholar 

  • Kral MV, Ice GE, Miller MK, Uchic MD, Rosenberg RO (2004) Three dimensional microscopy. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure. ASM International, Materials Park, OH

    Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  Google Scholar 

  • Larson BC, Yang W, Ice GE, Budai JD, Tischler JZ (2002) Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415:887–890

    Article  Google Scholar 

  • Lewis AC, Bingert JF, Rowenhorst DJ, Gupta A, Geltmacher AB, Spanos G (2006) Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Eng A 418:11–18

    Article  Google Scholar 

  • Lewis AC, Geltmacher AB (2006) Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scripta Mater 55:81–85

    Article  Google Scholar 

  • Link T, Zabler S, Epishin A, Haibel A, Bansal M, Thibault X (2006) Synchrotron tomography of porosity in single-crystal nickel base superalloys. Mat Sci Eng A 425:47–54

    Article  Google Scholar 

  • Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffiere JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905

    Article  Google Scholar 

  • Lund AC, Voorhees PW (2002) The effect of elastic stress on microstructural development: the three-dimensional microstructure of a γ-γ alloy. Acta Mater 50:2585–2598

    Article  Google Scholar 

  • Madison J, Spowart JE, Rowenhorst DJ, Pollock TM (2008) The three-dimensional reconstruction of the dendrite structure at the solid-liquid interface of a Ni-based single crystal. JOM 60(7): 26–30

    Article  Google Scholar 

  • Mangan MA, Lauren PD, Shiflet GJ (1997) Three-dimensional reconstruction of Widmanstätten plates in Fe-123Mn-08C. J Microsc 188:36–41

    Article  Google Scholar 

  • Maruyama B, Spowart JE, Hooper DJ, Mullins HM, Druma AM, Druma C, Alam MK (2006) A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Mater 54:1709–1713

    Article  Google Scholar 

  • Miller MK, Forbes RG (2009) Atom probe tomography. Mater Charact 60:461–469

    Article  Google Scholar 

  • Orloff J, Utlaut M, Swanson L (2003) High Resolution Focused Ion Beams: FIB and Its Applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  Google Scholar 

  • Russ JC (2002) The Image Processing Handbook, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Schaffer M, Wagner J, Schaffer B, Schmied M, Mulders H (2007) Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107:587–597

    Article  Google Scholar 

  • Schmidt S, Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D (2004) Watching the growth of bulk grains during recrystallization of deformed metals. Science 305:229–232

    Article  Google Scholar 

  • Simmons JP, Chuang P, Comer M, Spowart JE, Uchic MD, De Graef M (2009) Application and further development of advanced image processing algorithms for automated analysis of serial section image data. Mod Sim Mater Sci Eng 17:025002–0250024

    Article  Google Scholar 

  • Spanos G (2006) Foreword: scripta materialia viewpoint set on 3D characterization and analysis of materials. Scripta Mater 55:3

    Article  Google Scholar 

  • Spanos G, Rowenhorst DJ, Lewis AC, Geltmacher AB (2008) Combining serial sectioning, EBSD analysis, and image-based finite element modeling. MRS Bull 33:597–602

    Google Scholar 

  • Spowart JE (2006) Automated serial sectioning for 3-D analysis of microstructures. Scripta Mater 55:5–10

    Article  Google Scholar 

  • Spowart JE, Mullens HM, Puchala BT (2003) Collecting and analyzing microstructures in three dimensions: a fully automated approach. JOM 55:35–37

    Article  Google Scholar 

  • Thornton K, Poulsen HF (2008) Three-dimensional materials science: an intersection of three-dimensional reconstructions and simulations. MRS Bull 33:587–595

    Google Scholar 

  • Uchic MD (2006) 3D microstructural characterization: methods, analysis, and applications. JOM 58:24

    Article  Google Scholar 

  • Uchic MD, Groeber MA, Dimiduk DM, Simmons JP (2006) 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater 55:23–28

    Article  Google Scholar 

  • Uchic MD, Holzer L, Inkson BJ, Principe EL, Munroe P (2007) Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull 32:408–416

    Google Scholar 

  • Wall MA, Schwartz AJ, Nguyen L (2001) A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88:73–83

    Article  Google Scholar 

  • Wilson JR, Kobsiriphat W, Mendoza R, Chen HY, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5:541–544

    Article  Google Scholar 

  • Wilson JR, Duong AT, Gameiro M, Chen HY, Thornton K, Mumm DR, Barnett SA (2009) Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem Commun 11:1052–1056

    Article  Google Scholar 

  • Wojnar L, Kurzydlowski JK, Szala J (2004) Quantitative image analysis. In: Vander Voort GF (ed) ASM Handbook, Vol. 9, Metallography and Microstructure. ASM International, Materials Park, OH

    Google Scholar 

  • Wolfsdorf TL, Bender WH, Voorhees PW (1997) The morphology of high volume fraction solid-liquid mixtures: an application of microstructural tomography. Acta Mater 45:2279–2295

    Article  Google Scholar 

  • Zaefferer S, Wright SI, Raabe D (2008) Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructural characterization. Metall Mater Trans A 39A:374–389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Uchic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Uchic, M.D. (2011). Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures. In: Ghosh, S., Dimiduk, D. (eds) Computational Methods for Microstructure-Property Relationships. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0643-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0643-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0642-7

  • Online ISBN: 978-1-4419-0643-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics