Skip to main content

Status and Potential Therapeutic Importance of n–3 Fatty Acids in Acute Metabolic Trauma and Neurotraumatic Disorders

  • Chapter
  • First Online:
Beneficial Effects of Fish Oil on Human Brain
  • 1343 Accesses

Normalfunctioning of brain requires a very high metabolic rate, which is obtained by an uninterrupted supply of both glucose and oxygen. Glucose and oxygen are needed by brain for the production of ATP, which maintains the high metabolic rate. High metabolic rate is required for maintaining the appropriate ionic gradients across the neural membranes (low intracellular Na+, high K+, and very low cytosolic Ca2+) and optimal cellular redox potentials (Farooqui and Horrocks, 2007). Interruption in glucose and oxygen supply may result in compromised ATP generation, loss of ion homeostasis, mitochondrial dysfunction, production of ROS, such as superoxide and hydroxyl anion, and RNS, such as NO and ONOO, and changes in redox status of neural cells. These processes also contribute to cerebral edema, which is the primary cause of patient mortality after stroke. The initial response to a transient insufficiency of energy is depolarization, which causes Na+ influx into axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibhatla R.M., Hatcher J.F., and Dempsey R.J. (2003). Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxidants & Redox Signaling 5:647–654.

    CAS  Google Scholar 

  • Anderson D.K., Saunders R.D., Demediuk P., Dugan L.L., Braughler J.M., Hall E.D., Means E.D., and Horrocks L.A. (1985). Lipid hydrolysis and peroxidation in injured spinal cord: Partial protection with methylprednisolone or vitamin E and selenium. Cent. Nerv. Syst. Trauma 2:257–267.

    PubMed  CAS  Google Scholar 

  • Arundine M., and Tymianski M. (2004). Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol. Life Sci. 61:657–668.

    PubMed  CAS  Google Scholar 

  • Atlante A., Calissano P., Bobba A., Azzariti A., Marra E., and Passarella S. (2000). Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275:37159–37166.

    PubMed  CAS  Google Scholar 

  • Barone F.C., and Kilgore K.S. (2006). Role of inflammation and cellular stress in brain injury and central nervous system diseases. Clin. Neurosci. Res. 6:329–356.

    CAS  Google Scholar 

  • Bas O., Songur A., Sahin O., Mollaoglu H., Ozen O.A., Yaman M., Eser O., Fidan H., and Yagmurca M. (2007). The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem. Int. 50:548–554.

    PubMed  CAS  Google Scholar 

  • Bazan N.G. (1970). Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta. 218:1–10.

    PubMed  CAS  Google Scholar 

  • Bazan N.G., Tu B., and Rodriguez de Turco E.B. (2002). What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. In: Sutula T., and Pitkanen A. (eds.), Do Seizures Damage the Brain. Perspectives in Analytical Philosophy, pp. 175–185. Elsevier Science BV, Amsterdam.

    Google Scholar 

  • Bazan N.G. (2005). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    PubMed  CAS  Google Scholar 

  • Bazan N.G., Marcheselli V.L., and Cole-Edwards K. (2005). Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann. N.Y. Acad. Sci. 1053:137–147.

    PubMed  CAS  Google Scholar 

  • Bazan N.G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.

    PubMed  CAS  Google Scholar 

  • Bazan N.G. (2007). Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care. 10:136–141.

    PubMed  CAS  Google Scholar 

  • Bazan N.G. (2009). Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations and Alzheimer's disease. J. Lipid Res. 2009Apr;50 Suppl:S400–S405.

    Google Scholar 

  • Beattie M.S., Farooqui A.A., and Bresnahan J.C. (2000). Review of current evidence for apoptosis after spinal cord injury. J. Neurotrauma. 17:915–925.

    PubMed  CAS  Google Scholar 

  • Beckman J.S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J.C., and Tsai M. (1992). Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.

    PubMed  CAS  Google Scholar 

  • Bramlett H.M., and Dietrich W.D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24:133–150.

    PubMed  Google Scholar 

  • Block M.L., and Hong J.S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.

    PubMed  CAS  Google Scholar 

  • Bonventre J.V., Huang Z.H., Taheri M.R., O'Leary E., Li E., Moskowitz M.A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.

    PubMed  CAS  Google Scholar 

  • Bosetti F., and Weerasinghe G.R. (2003). The expression of brain cyclooxygenase-2 is down-regulated in the cytosolic phospholipase A2 knockout mouse. J. Neurochem. 87:1471–1477.

    PubMed  CAS  Google Scholar 

  • Cai D., Shen Y., De Bellard M., Tang S., Filbin M.T. (1999). Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89–101.

    PubMed  CAS  Google Scholar 

  • Cao D., Li M., Xue R., Zheng W., Liu Z., and Wang X. (2005). Chronic administration of ethyl docosahexaenoate decreases mortality and cerebral edema in ischemic gerbils. Life Sci. 78:74–81.

    PubMed  CAS  Google Scholar 

  • Cao D., Zhou C., Sun L., Xue R., Xu J., and Liu Z. (2006). Chronic administration of ethyl docosahexaenoate reduces gerbil brain eicosanoid productions following ischemia and reperfusion. J. Nutr. Biochem. 17:234–241.

    PubMed  CAS  Google Scholar 

  • Cao D., Yang B., Hou L., Xu J., Xue R., Sun L., Zhou C., and Liu Z. (2007). Chronic daily administration of ethyl docosahexaenoate protects against gerbil brain ischemic damage through reduction of arachidonic acid liberation and accumulation. J. Nutr. Biochem. 18:297–304.

    PubMed  CAS  Google Scholar 

  • Carmichael S.T. (2008). Plasticity of cortical projections after stroke. Neuroscientist 9:64–75.

    Google Scholar 

  • Choi-Kwon S., Park K.A., Lee H.J., Park M.S., Lee J.H., Jeon S.E., Choe M.A., and Park K.C. (2004). Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res. 152:11–18.

    PubMed  Google Scholar 

  • Demediuk P., Saunders R.D., Anderson D.K., Means E.D., and Horrocks L.A. (1985). Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82:7071–7075.

    PubMed  CAS  Google Scholar 

  • Denecker G., Vercammen D., Declercq W., and Vandenabeele P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58:356–370.

    PubMed  CAS  Google Scholar 

  • De Nicola A.F., Gonzalez S.L., Labombarda F., Deniselle M.C., Garay L., Guennoun R., and Schumacher M. (2006). Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J. Mol. Neurosci. 28:3–15.

    PubMed  Google Scholar 

  • Dhillon H.S., Donaldson D., Dempsey R.J., and Prasad M.R. (1994). Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J. Neurotrauma 11:405–415.

    PubMed  CAS  Google Scholar 

  • Dhillon H.S., Carman H.M., and Prasad R.M. (1999). Regional activities of phospholipase C after experimental brain injury in the rat. Neurochem. Res. 24:751–755.

    PubMed  CAS  Google Scholar 

  • Dronne M.A., Grenier E., Dumont T., Hommel M., and Boissel J.P. (2007). Role of astrocytes in grey matter during stroke: a modelling approach. Brain Res. 1138:231–242.

    PubMed  CAS  Google Scholar 

  • Dumuis A., Sebben M., Haynes L., Pin J.-P., and Bockaert J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70.

    PubMed  CAS  Google Scholar 

  • Edgar A.D., Strosznajder J., and Horrocks L.A. (1982). Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.

    PubMed  CAS  Google Scholar 

  • Ekdahl C.T., Kokaia Z., and Lindvall O. (2008). Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience (In Press).

    Google Scholar 

  • Ekdahl C.T., Kokaia Z., and Lindvall O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 158:1021–1029.

    Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Haun S., and Horrocks L.A. (1994). Ischemia and hypoxia. In: Siegel G.J., Agranoff B.W., Albers R.W., and Molinoff P.B. (eds.), Basic Neurochemistry, pp. 867–883. Raven Press, New York.

    Google Scholar 

  • Farooqui A.A., Yang H.C., and Horrocks L.A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.., Lu X.R., Halliwell B., and Horrocks L.A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2003). Plasmalogen, docosahexaenoic acid and neurological disorders. Adv. Exp. Biol. Med. 544: 335–354.

    CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in Brain. Springer, New York.

    Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2007a). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Horrocks L.A., Chen P., and Farooqui T. (2007b). Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res. Rev. 56: 443–471.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural membrane Lipidology. Springer, New York.

    Google Scholar 

  • Farooqui T. and Farooqui A.A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 130:203–215.

    Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2009). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N.K. and Ray S. (eds), Handbook of Neurochemistry and Molecular Neurobiology, 3rd edition, pp. 71–89. Springer, New York.

    Google Scholar 

  • Filbin M.T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4:703–713.

    PubMed  CAS  Google Scholar 

  • Fiskum, G., Murphy, A.N., Beal, M.F. (1999). Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19: 351–369.

    PubMed  CAS  Google Scholar 

  • Freeman J.M., Vining E.P.G., Pillas D.J., Pryzik P.L., Casey J.C., and Kelley M.T. (1998). The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363.

    PubMed  CAS  Google Scholar 

  • Gao Y., Nikulina E., Mellado W., and Filbin M.T. (2003). Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J. Neurosci. 23:11770–11777.

    PubMed  CAS  Google Scholar 

  • Gao L., Wang J.K., Sekhar K.R., Yin H.Y., Yared N.F., Schneider S.N., Sasi S., Dalton T.P., Anderson M.E., Chan J.Y., Morrow J.D., and Freeman M.L. (2007). Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J. Biol. Chem. 282:2529–2537.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: Current state. Curr. Pharmaceut. Design 12:3509–3519.

    CAS  Google Scholar 

  • Goldberg J.L., and Barres B.A. (2000). The relationship between neuronal survival and regeneration. Annu. Rev. Neurosci. 23:579–612.

    PubMed  CAS  Google Scholar 

  • Griffiths T., Evans M.C., and Meldrum B.S. (1983). Temporal lobe epilepsy, excitotoxins and the mechanism of selective neuronal loss. In: Fuxe K., Roberts P., and Schwarcz R. (eds.), Excitotoxins, pp. 331–342. Macmillan Publ. Co. Inc., New York.

    Google Scholar 

  • Guan J., Bennet L., Gluckman P.D., and Gunn A.J. (2003). Insulin-like growth factor-1 and post-ischemic brain injury. Prog. Neurobiol. 70:443–462.

    PubMed  CAS  Google Scholar 

  • Hayes K.C., Hull T.C., Delaney G.A., Potter P.J., Sequeira K.A., Campbell K., and Popovich P.G. (2002). Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J. Neurotrauma. 19:753–761.

    PubMed  CAS  Google Scholar 

  • Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P.G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.

    PubMed  Google Scholar 

  • Homayoun P., Rodriguez de Turco E.B., Parkins N.E., Lane D.C., Soblosky J., Carey M.E., and Bazan N.G. (1997). Delayed phospholipid degradation in rat brain after traumatic brain injury. J. Neurochem. 69:199–205.

    PubMed  CAS  Google Scholar 

  • Homayoun P., Parkins N.E., Soblosky J., Carey M.E., Rodriguez de Turco E.B., and Bazan N.G. (2000). Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem. Res. 25:269–276.

    PubMed  CAS  Google Scholar 

  • Horrocks L.A., Demediuk P., Saunders R.D., Dugan L., Clendenon N.R., Means E.D., and Anderson D.K. (1985). The degradation of phospholipids, formation of metabolites of arachidonic acid, and demyelination following experimental spinal cord injury. Cent. Nerv. Syst. Trauma 2:115–120.

    PubMed  CAS  Google Scholar 

  • Hossain M.S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.

    PubMed  CAS  Google Scholar 

  • Hossain M.S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 72:1133–1138.

    PubMed  CAS  Google Scholar 

  • Huang E.J., and Reichardt L.F. (2003). Trk receptors: roles in neuronal signal transduction. Ann. Rev. Biochem. 72:609–642.

    PubMed  CAS  Google Scholar 

  • Huang W.L., King V.R., Dyall S.C., Ward R.E., Lal N., Priestley J.V., and Michael-Titus A.T. (2007). A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:3004–3019.

    PubMed  CAS  Google Scholar 

  • Ikeda O., Murakami M., Ino H., Yamazaki M., Nemoto T., Koda M., Nakayama C., and Moriya H. (2001). Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol. 102:239–245.

    PubMed  CAS  Google Scholar 

  • Ikeda O., Murakami M., Ino H., Yamazaki M., Koda M., Nakayama C., and Moriya H. (2002). Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J. Neuropathol. Exp. Neurol. 61:142–153.

    PubMed  CAS  Google Scholar 

  • Jayakumar A.R., Rao K.V., Panikar K.S., Moriyama M., Reddy P.V., and Norenberg M.D. (2008). Trauma-induced cell swelling in cultured astrocytes. J. Neuropathol. Exp. Neurol. 67:417–427.

    PubMed  CAS  Google Scholar 

  • Jenkinson A.M., Collins A.R., Duthie S.J., Wahle K.W.J., and Duthie G.G. (1999). The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. FASEB J. 13:2138–2142.

    PubMed  CAS  Google Scholar 

  • Kalluri H.S., and Dempsey R.J. (2008). Growth factors, stem cells, and stroke. Neurosurg. Focus. 24:E14.

    PubMed  Google Scholar 

  • King V.R., Huang W.L., Dyall S.C., Curran O.E., Priestley J.V., and Michael-Titus A.T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 26:4672–4680.

    PubMed  CAS  Google Scholar 

  • Klussmann S., and Martin-Villalba A. (2005). Molecular targets in spinal cord injury. J. Mol. Med. 83:657–671.

    PubMed  CAS  Google Scholar 

  • Kossoff E.H. (2004). More fat and fewer seizures: dietary therapies for epilepsy. Lancet Neurol. 3:415–420.

    PubMed  Google Scholar 

  • Kou W., Luchtman D., and Song C. (2008). Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur. J. Nutr. 47:104–113.

    PubMed  CAS  Google Scholar 

  • Lang-Lazdunski L., Biondeau N., Jarretou G., and Heurteaux C. (2003). Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J. Vasc. Surg. 38:564–575.

    PubMed  Google Scholar 

  • Lauritzen I., Blondeau N., Heurteaux C., Widmann C., Romey G., and Lazunski M. (2000). Polyunsaturated fatty acids are potent neuroprotectors. EMBO J. 19:1784–1793.

    PubMed  CAS  Google Scholar 

  • Leker, R.R., and Shohami, E. (2002). Cerebral ischemia and trauma-different etiology yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 39: 55–73.

    PubMed  Google Scholar 

  • Liu Z., Stafstrom C.E., Sarkisian M.R., Yang Y., Hori A., Tandon P., and Holmes G.L. (1997). Seizure-induced glutamate release in mature and immature animals: an in vivo microdialysis study. NeuroReport 8:2019–2023.

    PubMed  CAS  Google Scholar 

  • Liu C.L., Siesjö B.K., and Hu B.R. (2004). Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 127:113–123.

    PubMed  CAS  Google Scholar 

  • Liu N.-K., Zhang Y.P., Titsworth W.L., Jiang X., Han S., Lu P.H., Shield C.B., and Xu X.M. (2006). A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann. Neurol. 59:577–579.

    Google Scholar 

  • Liu N.-K., Zhang Y.P., Han S., Pei J., Lu P.H., Shield C.B., and Xu X.M. (2007). Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. J. Neuropathol. Exp. Neurol. 66:932–943.

    PubMed  CAS  Google Scholar 

  • Lukácová N., Halát G., Chavko M., and Maršala J. (1996). Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem. Res. 21:869–873.

    PubMed  Google Scholar 

  • Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M., Botkjaer A., Gotlinger K., Serhan C.N., and Bazan N.G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115:2774–2783.

    PubMed  CAS  Google Scholar 

  • Ma D., Boneva N.B., Warashina S., Kaplamadzhiev D.B., Mori Y., Nakaya M.A., Kikuchi M., Tonchev A.B., Okano H., and Yamashima T. (2008). Expression of free fatty acid receptor GPR40 in the neurogenic niche of adult monkey hippocampus. Hippocampus 18:326–333.

    PubMed  CAS  Google Scholar 

  • Maher F.O., Clarke R.M., Kelly A., Nally R.E., and Lynch M.A. (2006). Interaction between interferon gamma and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J. Neurochem. 96:1560–1571.

    PubMed  CAS  Google Scholar 

  • Mark R.J., Lovell M.A., Markesbery W.R., Uchida K., and Mattson M.P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68:255–264.

    PubMed  CAS  Google Scholar 

  • Mattson M.P. (2003). Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3:65–94.

    PubMed  CAS  Google Scholar 

  • McCarty M.F. (2003). IGF-I activity may be a key determinant of stroke risk – a cautionary lesson for vegans. Med. Hypotheses. 61:323–334.

    PubMed  CAS  Google Scholar 

  • McIntosh T.K., Saatman K.E., Raghupathi R., Graham D.I., Smith D.H., Lee V.M., and Trojanowski J.Q. (1998). The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.

    PubMed  CAS  Google Scholar 

  • Meldrum B.S. (1993). Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 3:405–412.

    PubMed  CAS  Google Scholar 

  • Michael-Titus A.T. (2007). Omega-3 fatty acids and neurological injury. Prost. Leukot. Essent. Fatty Acids 77:295–300.

    CAS  Google Scholar 

  • Mizota A., Sato E., Taniai M., Adachi-Usami E., and Nishikawa M. (2001). Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats. Invest. Ophthalmol. Vis. Sci. 42:216–221.

    PubMed  CAS  Google Scholar 

  • Mostofsky D.I., Rabinovitz S., and Yehuda S. (2004). The use of fatty acid supplementation for seizure management. Neurobiol. Lipids 3, 4, available at: http://neurobiologyoflipids.org/content/3/4.

  • Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.

    PubMed  CAS  Google Scholar 

  • Murayama K., Yoneya S., Miyauchi O., Adachi-Usami E., and Nishikawa M. (2002). Fish oil (polyunsaturated fatty acid) prevents ischemic-induced injury in the mammalian retina. Exp. Eye Res. 74:671–676.

    PubMed  CAS  Google Scholar 

  • Nadi N.S., Wyler A.R., and Porter R.J. (1987). Amino acids and catecholamines in the epileptic focus from the human brain. Neurology 37:106.

    Google Scholar 

  • Nicotera P., and Lipton S.A. (1999). Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab. 19:583–591.

    PubMed  CAS  Google Scholar 

  • Ohab J.J. and Carmichael S.T. (2008). Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14:369–380.

    PubMed  CAS  Google Scholar 

  • Okada M., Amamoto T., Tomonaga M., Kawachi A., Yazawa K., Mine K., and Fujiwara M. (1996). The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience 71:17–25.

    PubMed  CAS  Google Scholar 

  • Ozen O.A., Casar M., Sahin O., Fidan H., Eser O., Mollaoglu H., Alkoc O., Yaman M., and Songur A. (2008). The protective effect of fish n-3 fatty acids on cerebral ischemia in rat prefrontal cortex. Neurol. Sci. 29:147–152.

    PubMed  Google Scholar 

  • Pan H.C., Kao T.K., Ou Y.C., Yang D.Y., Yen Y.J., Wang C.C., Chuang Y.H., Liao S.L., Raung S.L., Wu C.W., Chiang A.N., and Chen C.J. (2008). Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J. Nutr. Biochem. 2008 Sep 19. [Epub ahead of print].

    Google Scholar 

  • Patel M., Liang L.P., Hou H., Williams B.B., Kmiec M., Swartz H.M., Fessel J.P., and Roberts L.J. 2nd. (2008). Seizure-induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension. J. Neurochem. 104:264–270.

    PubMed  CAS  Google Scholar 

  • Pavel J., Lukácová N., Maršala J., and Maršala M. (2001). The regional changes of the catalytic NOS activity in the spinal cord of the rabbit after repeated sublethal ischemia. Neurochem. Res. 26:833–839.

    PubMed  CAS  Google Scholar 

  • Pelleymounter M.A., Cullen M.J., Baker M.B., Gollub M., Wellman C. (1996). The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. Mol Chem. Neuropathol. 29:211–226.

    PubMed  CAS  Google Scholar 

  • Phillis J., Horrocks L.A., and Farooqui A.A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Pilitsis J.G., Coplin W.M., O'Regan M.H., Wellwood J.M., Diaz F.G., Fairfax M.R., Michael D.B., and Phillis J.W. (2003). Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci. Lett. 349:136–138.

    PubMed  CAS  Google Scholar 

  • Pryor W.A., and Squadrito G.L. (1995). The chemistry of peroxynitrite: from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268:L699–L722.

    PubMed  CAS  Google Scholar 

  • Puri B.K., Koepp M.J., Holmes J., Hamilton G., and Yuen A.W. (2007). A 31-phosphorus neurospectroscopy study of omega-3 long-chain polyunsaturated fatty acid intervention with eicosapentaenoic acid and docosahexaenoic acid in patients with chronic refractory epilepsy. Prost. Leukot. Essent. Fatty Acids. 77:105–107.

    CAS  Google Scholar 

  • Rao J.S., Ertley R.N., Lee H.-J., DeMar J.C. Jr., Arnold J.T., Repoport S.I., and Bazinet R.P. (2007). N-3 Polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MARK-dependent mechanism. Mol. Psychiatry 12:36–46.

    PubMed  CAS  Google Scholar 

  • Ray S.K., Hogan E.L., and Banik N.L. (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res. Rev. 42:169–185.

    PubMed  CAS  Google Scholar 

  • Rordorf G., Uemura Y., and Bonventre J.V. (1991). Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11:1829–1836.

    PubMed  CAS  Google Scholar 

  • Rosenberger T.A., Villacreses N.E., Contreras M.., Bonventre J.V., and Rapoport S.I. (2003). Brain lipid metabolism in the cPLA2 knockout mouse. J. Lipid. Res. 44:109–117.

    PubMed  CAS  Google Scholar 

  • Sandhya A. Ong W.Y., Horrocks L.A., and Farooqui A.A. (1998). light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.

    PubMed  CAS  Google Scholar 

  • Sapirstein A., and Bonventre J.V. (2000). Phospholipases A2 in ischemic and toxic brain injury. Neurochem. Res. 25:745–753.

    PubMed  CAS  Google Scholar 

  • Schuhmann M.U., Mokhtarzadeh M., Stichtenoth D.O., Skardelly M., Klinge P.A., Gutzki F.M., Samii M., and Brinker T. (2003). Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol. Res. 25:481–491.

    PubMed  CAS  Google Scholar 

  • Serhan C.N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.

    PubMed  CAS  Google Scholar 

  • Serhan C.N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    PubMed  CAS  Google Scholar 

  • Sevik O., Mansson J.E., Bjorke Monson A.L., Jellum E., and Berge R.K. (1998). Generalized peroxisomal disorder in male twins: fatty acid composition of serum lipids and response to n-3 fatty acids. J. Inherit. Metab. Dis. 21:662–670.

    Google Scholar 

  • Siesjö B.K., Kristian T., Shibasaki F., and Uchino H. (2000). The role of mitochondrial dysfunction in reperfusion damage in the brain. In: Kriegistein J., and Klumpp S., (eds.), Pharmacology of Cerebral Ischemia, pp. 163–175. Wissenschaftliche Verlagsgeselischaft Mbh, Stuttgart.

    Google Scholar 

  • Silver J., and Miller J.H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–156.

    PubMed  CAS  Google Scholar 

  • Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.

    PubMed  CAS  Google Scholar 

  • Sherwin A., Robitaille Y., and Quesney F. (1988). Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38:920–923.

    PubMed  CAS  Google Scholar 

  • Shohami E., Shapira Y., Yadid G., Reisfeld N., and Yedgar S. (1989). Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem. 53:1541–1546.

    PubMed  CAS  Google Scholar 

  • Shohami E., Shapira Y., Sidi A., and Cotev S. (1987). Head injury induces increased prostaglandin synthesis in rat brain. J. Cereb. Blood Flow Metab. 7:58–63.

    PubMed  CAS  Google Scholar 

  • Smith P.F. (2003). Neuroprotection against hypoxia-ischemia by insulin-like growth factor-I (IGF-I). Drugs 6:1173–1177.

    CAS  Google Scholar 

  • Spencer S. (2007). Epilepsy: clinical observations and novel mechanisms. Lancet Neurol. 6:14–16.

    PubMed  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Brit. J. Pharmacol. 139:1014–1022.

    CAS  Google Scholar 

  • Strokin M., Chechneva O., Reymann K.G., and Reiser G. (2006). Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 140:547–553.

    PubMed  CAS  Google Scholar 

  • Sun G.Y., Horrocks L.A., and Farooqui A.A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103: 1–16.

    PubMed  CAS  Google Scholar 

  • Svensson C.I., and Yaksh T.L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42:553–583.

    PubMed  CAS  Google Scholar 

  • Sun G.Y., and Foudin L.L. (1984). On the status of lysolecithin in rat cerebral cortex during ischemia. J Neurochem. 43:1081–1086.

    PubMed  CAS  Google Scholar 

  • Sun G.Y., Xu J.F., Jensen M.D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.

    PubMed  CAS  Google Scholar 

  • Taha A.Y., Huot P.S., Reza-Lopez S., Pravitno N.R., Kang J.X., Burnham W.M., and Ma D.W. (2008). Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids. J. Neurochem. 105:380–388.

    PubMed  CAS  Google Scholar 

  • Takeuchi H., Mizuno T., Zhang G.Q., Wang J.Y., Kawanokuchi J., Kuno R., and Suzumura A. (2005). Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J. Biol. Chem. 280:10444–10454.

    PubMed  CAS  Google Scholar 

  • Tanaka S., Ishii K., Kasai K., Yoon S.O, and Saeki Y. (2003). Direct cAMP Signaling through G-Protein-Coupled Receptors Mediates Growth Cone Attraction Induced by Pituitary Adenylate. J. Neurosci. 23: 2274–2283.

    Google Scholar 

  • Tanaka S., Ishii K., Kasai K., Yoon S.O., and Saeki Y. (2007). Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J. Biol. Chem. 282:10506–10515.

    PubMed  CAS  Google Scholar 

  • Taylor W.A. (1988). Effects of Impact Injury of Rat Spinal Cord on Activities of Some Enzymes of Lipid Hydrolysis, Dissertation. The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Terano T., Fujishiro S., Ban T., Yamamoto K., Tanaka T., Noguchi Y., Tamura Y., Yazawa K., and Hirayama T. (1999). Docosahexaenoic acid supplementation improves the moderately severe dementia from thrombotic cerebrovascular diseases. Lipids 34(Suppl):S345–S346.

    Google Scholar 

  • Titsworth W.L., Liu N.K., and Xu X.M. (2008). Role of secretory phospholipase A2 in CNS inflammation: implications in traumatic spinal cord injury. CNS Neurol. Disord. Drug Targets. 7:254269.

    Google Scholar 

  • Uozumi N., and Shimizu T. (2002). Roles for cytosolic phospholipase A2α as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat. 68–9:59–69.

    Google Scholar 

  • Vaynman S., Ying Z., and Gomez-Pinilla F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20:2580–2590.

    PubMed  Google Scholar 

  • Vexier Z.S., Tang X.N., and Yenari M.A. (2006). Inflammation in adult and neonatal stroke. Clin. Neurosci. Res. 6:293–313.

    Google Scholar 

  • Visioli F., Rodriguez de Turco E.B., Kreisman N.R., and Bazan N.G. (1994). Membrane lipid degradation is related to interictal cortical activity in a series of seizures. Metab Brain Dis. 9:161–170.

    PubMed  CAS  Google Scholar 

  • Wang X., Zhao X., Mao Z.Y., Wang X.M., and Liu Z.L. (2003). Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. NeuroReport 14:2457–2461.

    PubMed  CAS  Google Scholar 

  • Wang J.Y., Wen L.L., Huang Y.N., Chen Y.T., and Ku M.C. (2006). Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.

    CAS  Google Scholar 

  • Wasterlain C.G., Fujikawa D.G., Penix L., and Sankar R. (1993). Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34:S37–S53.

    PubMed  Google Scholar 

  • Wei E.P., Lamb R.G., and Kontos H.A. (1982). Increased phospholipase C activity after experimental brain injury. J. Neurosurg. 56:695–698.

    PubMed  CAS  Google Scholar 

  • Wingrave J.M., Schaecher K.E., Sribnick E.A., Wilford G.G., Ray S.K., Hazen-Martin D.J., Hogan E.L., and Banik N.L. (2003). Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats. J. Neurosci. Res. 73:95–104.

    PubMed  CAS  Google Scholar 

  • Wu A., Molteni R., Ying Z., and Gomez-Pinilla F. (2003). A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375.

    PubMed  CAS  Google Scholar 

  • Wu A., Ying Z., and Gomez-Pinilla F. (2004a). Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J. Neurotrauma 21:1457–1467.

    PubMed  Google Scholar 

  • Wu A., Ying Z., and Gomez-Pinilla F. (2004b). The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci. 19:1699–1707.

    PubMed  Google Scholar 

  • Wu A., Ying Z., and Gomez-Pinilla F. (2005). Omega-3 fatty acids supplementation restores homeostatic mechanisms disrupted by traumatic brain injury. J. Neurotrauma 22:1212.

    Google Scholar 

  • Xiong Y.Q., Rabchevsky A.G., and Hall E.D. (2007). Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J. Neurochem. 100:639–649.

    PubMed  CAS  Google Scholar 

  • Yamashima T. (2008). A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory. Prog. Neurobiol. 84:105–115.

    PubMed  CAS  Google Scholar 

  • Young C., Gean P.W., Chiou L.C., and Shen Y.Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.

    PubMed  CAS  Google Scholar 

  • Yuen A.W., and Sander J.W. (2004). Is omega-3 fatty acid deficiency a factor contributing to refractory seizures and SUDEP? A hypothesis. Seizure 13:104–107.

    Google Scholar 

  • Yuen A.W., Sander J.W., Flugel D., Patsalos P.N., Browning L., Bell G.S., Jihnson T., and Koepp M.M. (2005). Omega-3 fatty acid supplementation in patients with chronic epilepsy: a randomized trial. Epilepsy Behav. 7:253–258.

    PubMed  Google Scholar 

  • Yuen A.W., Sander J.W., Flugel D., Patsalos P.N., Browning L., Bell G.S., and Koepp M.M. (2008). Erythrocyte and plasma fatty acid profiles in patients with epilepsy: does carbamazepine affect omega-3 fatty acid concentrations? Epilepsy Behav. 12:317–323.

    PubMed  Google Scholar 

  • Zagulska-Szymczak S., Filipkowski R.K., and Kaczmarek L. (2001). Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem. Int. 38:485–501.

    PubMed  CAS  Google Scholar 

  • Zaleska M.M., and Wilson D.F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.

    PubMed  CAS  Google Scholar 

  • Zhu W., Fan Y., Frenzel T., Gasmi M., Bartus R.T., Young W.L., Yang G.Y., and Chen Y. (2008). Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke 39:1254–1261.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Status and Potential Therapeutic Importance of n–3 Fatty Acids in Acute Metabolic Trauma and Neurotraumatic Disorders. In: Beneficial Effects of Fish Oil on Human Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0543-7_8

Download citation

Publish with us

Policies and ethics