Skip to main content

Conditioning of Addiction

  • Chapter
  • First Online:

Abstract

Drugs of abuse are initially ingested for their euphorigenic properties. However, by means of classical conditioning, repeated drug-taking behavior results in significant association of these euphorigenic effects with environmental factors such as drug paraphernalia, the location of drug self-administration, and other olfactory, auditory, and visual stimuli. In turn, these drug-associated environmental factors or “cues” themselves become motivational factors that contribute to continued drug use, and also become triggers for relapse. In this chapter, we will discuss various animal models for studying the neurobiological basis of conditioning in the context of drug addiction, followed by a summary of findings from the animal literature on the neural substrates of drug conditioning. In addition, we will review findings from human imaging studies that have revealed specific neural circuits that mediate the processing of information related to drug-associated cues. Finally, behavioral and pharmacological therapies that are designed to facilitate the extinction of drug conditioning and attenuate cue-evoked drug craving and relapse will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alderson HL, Parkinson JA, Robbins TW et al (2001) The effects of excitotoxic lesions of the nucleus accumbens core or shell regions on intravenous heroin self-administration in rats. Psychopharmacology 153:455–463

    Article  PubMed  CAS  Google Scholar 

  2. Alderson HL, Robbins TW, Everitt BJ (2000) The effects of excitotoxic lesions of the basolateral amygdala on the acquisition of heroin-seeking behaviour in rats. Psychopharmacology 153:111–119

    Article  PubMed  CAS  Google Scholar 

  3. Alderson HL, Robbins TW, Everitt BJ (2000) Heroin self-administration under a second-order schedule of reinforcement: acquisition and maintenance of heroin-seeking behaviour in rats. Psychopharmacology 153:120–133

    Article  PubMed  CAS  Google Scholar 

  4. Alleweireldt AT, Hobbs RJ, Taylor AR et al (2006) Effects of SCH-23390 infused into the amygdala or adjacent cortex and basal ganglia on cocaine seeking and self-administration in rats. Neuropsychopharmacology 31:363–374

    Article  PubMed  CAS  Google Scholar 

  5. Alleweireldt AT, Weber SM, Neisewander JL (2001) Passive exposure to a contextual discriminative stimulus reinstates cocaine-seeking behavior in rats. Pharmacol Biochem Behav 69:555–560

    Article  PubMed  CAS  Google Scholar 

  6. Arroyo M, Markou A, Robbins TW et al (1998) Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology 140:331–344

    Article  PubMed  CAS  Google Scholar 

  7. Baker DA, McFarland K, Lake RW et al (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749

    Article  PubMed  CAS  Google Scholar 

  8. Baker DA, Shen H, Kalivas PW (2002) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23:161–162

    Article  PubMed  CAS  Google Scholar 

  9. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  PubMed  CAS  Google Scholar 

  10. Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  PubMed  CAS  Google Scholar 

  11. Bell K, Duffy P, Kalivas PW (2000) Context-specific enhancement of glutamate transmission by cocaine. Neuropsychopharmacology 23:335–344

    Article  PubMed  CAS  Google Scholar 

  12. Black YD, Green-Jordan K, Eichenbaum HB et al (2004) Hippocampal memory system function and the regulation of cocaine self-administration behavior in rats. Behav Brain Res 151:225–238

    Article  PubMed  CAS  Google Scholar 

  13. Bonson KR, Grant SJ, Contoreggi CS et al (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26:376–386

    Article  PubMed  CAS  Google Scholar 

  14. Bossert JM, Liu SY, Lu L et al (2004) A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci 24:10726–10730

    Article  PubMed  CAS  Google Scholar 

  15. Botreau F, Paolone G, Stewart J (2006) d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172:173–178

    Article  PubMed  CAS  Google Scholar 

  16. Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986

    Article  PubMed  Google Scholar 

  17. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  PubMed  Google Scholar 

  18. Breiter HC, Gollub RL, Weisskoff RM et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  19. Burattini C, Gill TM, Aicardi G et al (2006) The ethanol self-administration context as a reinstatement cue: acute effects of naltrexone. Neuroscience 139:877–887

    Article  PubMed  CAS  Google Scholar 

  20. Carelli RM (2000) Activation of accumbens cell firing by stimuli associated with cocaine delivery during self-administration. Synapse 35:238–242

    Article  PubMed  CAS  Google Scholar 

  21. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    Article  PubMed  CAS  Google Scholar 

  22. Chaudhri N, Caggiula AR, Donny EC et al (2005) Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacology 180:258–266

    Article  PubMed  CAS  Google Scholar 

  23. Chaudhri N, Caggiula AR, Donny EC et al (2006) Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189:27–36

    Article  PubMed  CAS  Google Scholar 

  24. Chaudhri N, Caggiula AR, Donny EC et al (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184:353–366

    Article  PubMed  CAS  Google Scholar 

  25. Childress AR, Ehrman RN, Wang Z et al (2008) Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3:e1506

    Article  PubMed  CAS  Google Scholar 

  26. Childress AR, Hole AV, Ehrman RN et al (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 137:73–95

    PubMed  CAS  Google Scholar 

  27. Childress AR, Mozley PD, McElgin W et al (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    PubMed  CAS  Google Scholar 

  28. Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: Reversal by D1 antagonists. Proc Natl Acad Sci USA 98:1976–1981

    Article  PubMed  CAS  Google Scholar 

  29. Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167

    Article  PubMed  Google Scholar 

  30. Crombag HS, Shaham Y (2002) Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116:169–173

    Article  PubMed  CAS  Google Scholar 

  31. Cunningham CL, Ferree NK, Howard MA (2003) Apparatus bias and place conditioning with ethanol in mice. Psychopharmacology 170:409–422

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham CL, Smith R, McMullin C (2003) Competition between ethanol-induced reward and aversion in place conditioning. Learn Behav 31:273–280

    Article  PubMed  Google Scholar 

  33. Dayas CV, Liu X, Simms JA et al (2007) Distinct patterns of neural activation associated with ethanol seeking: effects of naltrexone. Biol Psychiatry 61:979–989

    Article  PubMed  CAS  Google Scholar 

  34. Deroche-Gamonet V, Piat F, Le Moal M et al (2002) Influence of cue-conditioning on acquisition, maintenance and relapse of cocaine intravenous self-administration. Eur J Neurosci 15:1363–1370

    Article  PubMed  Google Scholar 

  35. Di Ciano P (2008) Drug seeking under a second-order schedule of reinforcement depends on dopamine D3 receptors in the basolateral amygdala. Behav Neurosci 122:129–139

    Article  PubMed  CAS  Google Scholar 

  36. Di Ciano P (2008) Facilitated acquisition but not persistence of responding for a cocaine-paired conditioned reinforcer following sensitization with cocaine. Neuropsychopharmacology 33:1426–1431

    Article  PubMed  CAS  Google Scholar 

  37. Di Ciano P, Everitt BJ (2001) Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 25:341–360

    Article  PubMed  Google Scholar 

  38. Di Ciano P, Everitt BJ (2004) Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci 19:1661–1667

    Article  PubMed  Google Scholar 

  39. Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24:7167–7173

    Article  PubMed  CAS  Google Scholar 

  40. Di Ciano P, Robbins TW, Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33:1413–1425

    Article  PubMed  CAS  Google Scholar 

  41. Di Pietro NC, Black YD, Kantak KM (2006) Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 24:3285–3298

    Article  PubMed  Google Scholar 

  42. Donny EC, Caggiula AR, Rose C et al (2000) Differential effects of response-contingent and response-independent nicotine in rats. Eur J Pharmacol 402:231–240

    Article  PubMed  CAS  Google Scholar 

  43. Ehrman RN, Robbins SJ, Childress AR et al (1992) Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology 107:523–529

    Article  PubMed  CAS  Google Scholar 

  44. Epstein DH, Preston KL (2003) The reinstatement model and relapse prevention: a clinical perspective. Psychopharmacology 168:31–41

    Article  PubMed  CAS  Google Scholar 

  45. Epstein DH, Preston KL, Stewart J et al (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology 189:1–16

    Article  PubMed  CAS  Google Scholar 

  46. Everitt BJ, Morris KA, O'Brien A et al (1991) The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 42:1–18

    Article  PubMed  CAS  Google Scholar 

  47. Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology 153:17–30

    Article  PubMed  CAS  Google Scholar 

  48. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  49. Falk JL, Lau CE (1993) Oral cocaine as a reinforcer: acquisition conditions and importance of stimulus control. Behav Pharmacol 4:597–609

    Article  PubMed  CAS  Google Scholar 

  50. Falk JL, Lau CE (1995) Stimulus control of addictive behavior: persistence in the presence and absence of a drug. Pharmacol Biochem Behav 50:71–75

    Article  PubMed  CAS  Google Scholar 

  51. Foltin RW, Haney M (2000) Conditioned effects of environmental stimuli paired with smoked cocaine in humans. Psychopharmacology 149:24–33

    Article  PubMed  CAS  Google Scholar 

  52. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26:3584–3588

    Article  PubMed  CAS  Google Scholar 

  53. Fuchs RA, Evans KA, Ledford CC et al (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30:296–309

    Article  PubMed  CAS  Google Scholar 

  54. Fuchs RA, Evans KA, Parker MC et al (2004) Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 176:459–465

    Article  PubMed  CAS  Google Scholar 

  55. Fuchs RA, Evans KA, Parker MP et al (2004) Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci 24:6600–6610

    Article  PubMed  CAS  Google Scholar 

  56. Garavan H, Pankiewicz J, Bloom A et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798

    Article  PubMed  CAS  Google Scholar 

  57. Gass JT, Olive MF (2009) Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry 65:717–720

    Google Scholar 

  58. Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575

    Article  PubMed  CAS  Google Scholar 

  59. Goldberg SR, Spealman RD, Kelleher RT (1979) Enhancement of drug-seeking behavior by environmental stimuli associated with cocaine or morphine injections. Neuropharmacology 18:1015–1017

    Article  PubMed  CAS  Google Scholar 

  60. Goldstein RZ, Tomasi D, Rajaram S et al (2007) Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144:1153–1159

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  62. Grant S, London ED, Newlin DB et al (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045

    Article  PubMed  CAS  Google Scholar 

  63. Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    Article  PubMed  CAS  Google Scholar 

  64. Hamlin AS, Clemens KJ, McNally GP (2008) Renewal of extinguished cocaine-seeking. Neuroscience 151:659–670

    Article  PubMed  CAS  Google Scholar 

  65. Harmer CJ, Phillips GD (1999) Enhanced dopamine efflux in the amygdala by a predictive, but not a non-predictive, stimulus: facilitation by prior repeated D-amphetamine. Neuroscience 90:119–130

    Article  PubMed  CAS  Google Scholar 

  66. Hemby SE, Co C, Koves TR et al (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology 133:7–16

    Article  PubMed  CAS  Google Scholar 

  67. Hitchcott PK, Phillips GD (1998) Effects of intra-amygdala R(+) 7-OH-DPAT on intra-accumbens D-amphetamine-associated learning. II. Instrumental conditioning. Psychopharmacology 140:310–318

    Article  PubMed  CAS  Google Scholar 

  68. Hollander JA, Carelli RM (2007) Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J Neurosci 27:3535–3539

    Article  PubMed  CAS  Google Scholar 

  69. Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14:1843–1855

    Article  PubMed  CAS  Google Scholar 

  70. Hsu E, Packard MG (2007) Medial prefrontal cortex infusions of bupivacaine or AP-5 block extinction of amphetamine conditioned place preference. Neurobiol Learn Mem 89:504–512

    Article  PubMed  CAS  Google Scholar 

  71. Hutcheson DM, Parkinson JA, Robbins TW et al (2001) The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology 153:464–472

    Article  PubMed  CAS  Google Scholar 

  72. Hyytia P, Sinclair JD (1991) Stimulus-controlled responding for ethanol in AA and Wistar rats. Alcohol 8:229–234

    Article  PubMed  CAS  Google Scholar 

  73. Ito R, Dalley JW, Howes SR et al (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  74. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  CAS  Google Scholar 

  75. Itzhak Y, Martin JL (2002) Cocaine-induced conditioned place preference in mice: induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology 26:130–134

    Article  PubMed  CAS  Google Scholar 

  76. Jacobs E, Smit A, de Vries T et al (2005) Long-term gene expression in the nucleus accumbens following heroin administration is subregion-specific and depends on the nature of drug administration. Addict Biol 10:91–100

    Article  PubMed  CAS  Google Scholar 

  77. Jacobs EH, Smit AB, De Vries TJ et al (2003) Neuroadaptive effects of active versus passive drug administration in addiction research. Trends Pharmacol Sci 24:566–573

    Article  PubMed  CAS  Google Scholar 

  78. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    Article  PubMed  CAS  Google Scholar 

  79. Kalivas PW, Peters J, Knackstedt L (2006) Animal models and brain circuits in drug addiction. Mol Interv 6:339–344

    Article  PubMed  CAS  Google Scholar 

  80. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  81. Kantak KM, Black Y, Valencia E et al (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    PubMed  CAS  Google Scholar 

  82. Kelley JB, Anderson KL, Itzhak Y (2007) Long-term memory of cocaine-associated context: disruption and reinstatement. Neuroreport 18:777–780

    Article  PubMed  CAS  Google Scholar 

  83. Kilts CD, Schweitzer JB, Quinn CK et al (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341

    Article  PubMed  CAS  Google Scholar 

  84. Kosten TR, Scanley BE, Tucker KA et al (2006) Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology 31:644–650

    Article  PubMed  CAS  Google Scholar 

  85. Kruzich PJ, See RE (2001) Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. J Neurosci 21:RC155

    PubMed  CAS  Google Scholar 

  86. LaRowe SD, Myrick H, Hedden S et al (2007) Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry 164:1115–1117

    Article  PubMed  Google Scholar 

  87. Le Foll B, Goldberg SR (2005) Control of the reinforcing effets of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci 26:287–293

    Article  PubMed  CAS  Google Scholar 

  88. Maas LC, Lukas SE, Kaufman MJ et al (1998) Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155:124–126

    PubMed  CAS  Google Scholar 

  89. McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 168:57–65

    Article  PubMed  CAS  Google Scholar 

  90. Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148

    Article  PubMed  CAS  Google Scholar 

  91. Milekic MH, Brown SD, Castellini C et al (2006) Persistent disruption of an established morphine conditioned place preference. J Neurosci 26:3010–3020

    Article  PubMed  CAS  Google Scholar 

  92. Miller CA, Marshall JF (2004) Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 24:6889–6897

    Article  PubMed  CAS  Google Scholar 

  93. Miller CA, Marshall JF (2005) Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur J Neurosci 21:1385–1393

    Article  PubMed  Google Scholar 

  94. Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  PubMed  CAS  Google Scholar 

  95. Modell JG, Mountz JM (1995) Focal cerebral blood flow change during craving for alcohol measured by SPECT. J Neuropsychiatry Clin Neurosci 7:15–22

    PubMed  CAS  Google Scholar 

  96. Moran MM, McFarland K, Melendez RI et al (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393

    Article  PubMed  CAS  Google Scholar 

  97. Mueller D, Stewart J (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res 115:39–47

    Article  PubMed  CAS  Google Scholar 

  98. Neisewander JL, Baker DA, Fuchs RA et al (2000) Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci 20:798–805

    PubMed  CAS  Google Scholar 

  99. O’Brien CP, Childress AR, McLellan AT et al (1992) Classical conditioning in drug-dependent humans. Ann NY Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  100. O’Brien CP, Gardner EL (2005) Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 108:18–58

    Article  PubMed  CAS  Google Scholar 

  101. Olmstead MC (2006) Animal models of drug addiction: where do we go from here? Q J Exp Psychol 59:625–653

    Article  Google Scholar 

  102. Palmatier MI, Evans-Martin FF, Hoffman A et al (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    Article  PubMed  CAS  Google Scholar 

  103. Panlilio LV, Weiss SJ, Schindler CW (1996) Cocaine self-administration increased by compounding discriminative stimuli. Psychopharmacology 125:202–208

    Article  PubMed  CAS  Google Scholar 

  104. Panlilio LV, Weiss SJ, Schindler CW (1998) Motivational effects of compounding discriminative stimuli associated with food and cocaine. Psychopharmacology 136:70–74

    Article  PubMed  CAS  Google Scholar 

  105. Panlilio LV, Weiss SJ, Schindler CW (2000) Effects of compounding drug-related stimuli: escalation of heroin self-administration. J Exp Anal Behav 73:211–224

    Article  PubMed  CAS  Google Scholar 

  106. Panlilio LV, Yasar S, Nemeth-Coslett R et al (2005) Human cocaine-seeking behavior and its control by drug-associated stimuli in the laboratory. Neuropsychopharmacology 30:433–443

    Article  PubMed  CAS  Google Scholar 

  107. Pavlov IP (1927) Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University, London

    Google Scholar 

  108. Pears A, Parkinson JA, Hopewell L et al (2003) Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J Neurosci 23:11189–11201

    PubMed  CAS  Google Scholar 

  109. Peters J, Vallone J, Laurendi K et al (2008) Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology 197:319–326

    Article  PubMed  CAS  Google Scholar 

  110. Pierce RC, Bell K, Duffy P et al (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16:1550–1560

    PubMed  CAS  Google Scholar 

  111. Ranaldi R, Roberts DC (1996) Initiation, maintenance and extinction of cocaine self-administration with and without conditioned reward. Psychopharmacology 128:89–96

    Article  PubMed  CAS  Google Scholar 

  112. Risinger FO, Cunningham CL, Bevins RA et al (2002) Place conditioning: what does it add to our understanding of ethanol reward? Alcohol Clin Exp Res 26:1444–1452

    Article  PubMed  Google Scholar 

  113. Rizos Z, Ovari J, Leri F (2005) Reconditioning of heroin place preference requires the basolateral amygdala. Pharmacol Biochem Behav 82:300–305

    Article  PubMed  CAS  Google Scholar 

  114. Rogers JL, See RE (2007) Selective inactivation of the ventral hippocampus attenuates cue-induced and cocaine-primed reinstatement of drug-seeking in rats. Neurobiol Learn Mem 87:688–692

    Article  PubMed  CAS  Google Scholar 

  115. Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38

    Article  PubMed  Google Scholar 

  116. Schindler CW, Panlilio LV, Goldberg SR (2002) Second-order schedules of drug self-administration in animals. Psychopharmacology 163:327–344

    Article  PubMed  CAS  Google Scholar 

  117. Schuster CR, Woods JH (1968) The conditioned reinforcing effects of stimuli associated with morphine reinforcement. Int J Addict 3:223–230

    Google Scholar 

  118. See RE, Grimm JW, Kruzich PJ et al (1999) The importance of a compound stimulus in conditioned drug-seeking behavior following one week of extinction from self-administered cocaine in rats. Drug Alcohol Depend 57:41–49

    Article  PubMed  CAS  Google Scholar 

  119. See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology 154:301–310

    Article  PubMed  CAS  Google Scholar 

  120. Self DW, Choi KH, Simmons D et al (2004) Extinction training regulates neuroadaptive responses to withdrawal from chronic cocaine self-administration. Learn Mem 11:648–657

    Article  PubMed  Google Scholar 

  121. Sinha R, Fuse T, Aubin L-R et al (2000) Psychological stress, drug-related cues and cocaine craving. Psychopharmacology 152:140–148

    Article  PubMed  CAS  Google Scholar 

  122. Smith SG, Werner TE, Davis WM (1977) Alcohol-associated conditioned reinforcement. Psychopharmacology 53:223–226

    Article  PubMed  CAS  Google Scholar 

  123. Stefanski R, Ladenheim B, Lee SH et al (1999) Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. Eur J Pharmacol 371:123–135

    Article  PubMed  CAS  Google Scholar 

  124. Stefanski R, Ziolkowska B, Kusmider M et al (2007) Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system. Brain Res 1157:1–10

    Article  PubMed  CAS  Google Scholar 

  125. Sun WL, Rebec GV (2003) Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci 23:10258–10264

    PubMed  CAS  Google Scholar 

  126. Sutton MA, Schmidt EF, Choi K-H et al (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421:70–75

    Article  PubMed  CAS  Google Scholar 

  127. Tran-Nguyen LT, Fuchs RA, Coffey GP et al (1998) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19:48–59

    Article  PubMed  CAS  Google Scholar 

  128. Tsiang MT, Janak PH (2006) Alcohol seeking in C57BL/6 mice induced by conditioned cues and contexts in the extinction-reinstatement model. Alcohol 38:81–88

    Article  PubMed  CAS  Google Scholar 

  129. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  PubMed  CAS  Google Scholar 

  130. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  131. Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670

    Article  PubMed  CAS  Google Scholar 

  132. Vervliet B (2008) Learning and memory in conditioned fear extinction: effects of d-cycloserine. Acta Psychol (Amst) 127:601–613

    Article  Google Scholar 

  133. Volkow ND, Fowler JS, Wang G-J (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47(Suppl 1):3–13

    Article  PubMed  CAS  Google Scholar 

  134. Volkow ND, Wang GJ, Fowler JS et al (1999) Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 156:19–26

    PubMed  CAS  Google Scholar 

  135. Volkow ND, Wang GJ, Ma Y et al (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939

    Article  PubMed  CAS  Google Scholar 

  136. Volkow ND, Wang G-J, Telang F et al (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  PubMed  CAS  Google Scholar 

  137. Wallace BC (1989) Psychological and environmental determinants of relapse in crack cocaine smokers. J Subst Abuse Treat 6:95–106

    Article  PubMed  CAS  Google Scholar 

  138. Wang B, Luo F, Zhang WT et al (2000) Stress or drug priming induces reinstatement of extinguished conditioned place preference. Neuroreport 11:2781–2784

    Article  PubMed  CAS  Google Scholar 

  139. Wang GJ, Volkow ND, Fowler JS et al (1999) Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 64:775–784

    Article  PubMed  CAS  Google Scholar 

  140. Weiss F (2005) Neurobiology of craving, conditioned reward and relapse. Curr Opin Pharmacol 5:9–19

    Article  PubMed  CAS  Google Scholar 

  141. Weiss F, Maldonado-Vlaar CS, Parsons LH et al (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Nat Acad Sci USA 97:4321–4326

    Article  PubMed  CAS  Google Scholar 

  142. Weissenborn R, Robbins TW, Everitt BJ (1997) Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology 134:242–257

    Article  PubMed  CAS  Google Scholar 

  143. Wexler BE, Gottschalk CH, Fulbright RK et al (2001) Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry 158:86–95

    Article  PubMed  CAS  Google Scholar 

  144. Whitelaw RB, Markou A, Robbins TW et al (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology 127:213–224

    PubMed  CAS  Google Scholar 

  145. Yun IA, Fields HL (2003) Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task. Neuroscience 121:747–757

    Article  PubMed  CAS  Google Scholar 

  146. Zavala AR, Biswas S, Harlan RE et al (2007) Fos and glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking behavior in abstinent rats. Neuroscience 145:438–452

    Article  PubMed  CAS  Google Scholar 

  147. Zavala AR, Weber SM, Rice HJ et al (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction and reinstatement of cocaine-conditioned place preference. Brain Res 990:157–164

    Article  PubMed  CAS  Google Scholar 

  148. Zhou W, Kalivas PW (2008) N-Acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 63:338–340

    Article  PubMed  CAS  Google Scholar 

  149. Zironi I, Burattini C, Aicardi G et al (2006) Context is a trigger for relapse to alcohol. Behav Brain Res 167:150–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Foster Olive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Olive, M.F., Kalivas, P.W. (2010). Conditioning of Addiction. In: Johnson, B. (eds) Addiction Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0338-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0338-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0337-2

  • Online ISBN: 978-1-4419-0338-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics