Skip to main content

Relativisitically Oscillating Mirrors — an Ultrabright Attosecond Source

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

Abstract

The interaction of relativistically intense (Iλ2>>1.3 1018Wcm-2μm2) laser pulses with a near step-like plasma density profile results in relativistic oscillations of the reflection point. This process results in efficient conversion of the incident laser to high harmonic spectrum. Recent experimental results show that the beam quality is near diffraction limited and consequently that very high focused intensities can be achieved opening up the possibility of ultra-intense X-ray interactions for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grüner F et al., Applied Physics B, 86, 431–435 (2007)

    Article  Google Scholar 

  2. P. Corkum, F. Krausz, Nature Physics, 3, 381 (2007).

    Article  ADS  Google Scholar 

  3. Gordienko S., et al., Phys. Rev. Lett., 94, 103903 (2005)

    Article  ADS  Google Scholar 

  4. Gordienko S. et al., Phys. Rev. Lett., 93, 115002 (2004)

    Article  ADS  Google Scholar 

  5. Tsakiris GD et al., New Journal of Physics, 8, 19 (2006)

    Article  ADS  Google Scholar 

  6. Dromey B. et al., Nature Phys. 2, 456 (2006)

    Article  ADS  Google Scholar 

  7. Dromey B. et al.,, Phys. Rev. Lett. 99, 085001 (2007)

    Article  ADS  Google Scholar 

  8. Norreys P. et al., Phys. Rev. Lett., 76, 1832–1835, (1996)

    Article  ADS  Google Scholar 

  9. Wilks S. C. et al., Phys. Rev. Lett., 69, 1383 (1992)

    Article  ADS  Google Scholar 

  10. P. Gibbon, Phys. Rev. Lett., 76, 50 (1996); S.V. Bulanov, et al., Phys. Plasmas, 1, 745 (1994); R. Lichters, et al., Phys. Plasmas, 3, 3425 (1996)

    Article  ADS  Google Scholar 

  11. A. Einstein, Ann. Phys. (Leipzig), 17, 891 (1905)

    ADS  Google Scholar 

  12. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E, 74, 046404 (2006)

    Article  ADS  Google Scholar 

  13. Geissler M. et al, New Journal of Physics 9, 218 (2007)

    Article  ADS  Google Scholar 

  14. An der Brugge D., Pukhov A., Phys. Plasmas 14, 093104 (2007)

    Article  ADS  Google Scholar 

  15. R. Lichters and J. Meyer-ter-Vehn, Multiphoton Processes 1996, Institute of physics Conf. Series 154, p221 (1997)

    Google Scholar 

  16. Quere F. et al., Phys. Rev. Lett., 96, 125004 (2006)

    Article  ADS  Google Scholar 

  17. S. Rykovanov et al. in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Zepf, M. et al. (2009). Relativisitically Oscillating Mirrors — an Ultrabright Attosecond Source. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_35

Download citation

Publish with us

Policies and ethics