Skip to main content

Systematic Design of Metamaterials by Topology Optimization

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

Abstract

Metamaterials are engineered materials with properties usually not seen in nature. This paper reviews the authors work in the field of metamaterial design by the topology optimization method. Examples include the optimization of elastic materials with negative Poisson's ratio and thermal expansion coefficient, electromagnetic band gap materials and electromagnetic metamaterials with negative permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a ho mogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–224, 1988.

    Article  MathSciNet  Google Scholar 

  2. M.P. Bendsøe and O. Sigmund. Material interpolation schemes in topology optimization. Archives of Applied Mechanics, 69(9–10):635–654, 1999.

    Google Scholar 

  3. M.P. Bendsøe and O. Sigmund. Topology Optimization — Theory, Methods, and Applications. Springer Verlag, Berlin, 2004.

    MATH  Google Scholar 

  4. S.J. Cox and D.C. Dobson. Maximizing band gaps in two-dimensional photonic crystals. SIAM Journal for Applied Mathematics, 59(6):2108–2120, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.J. Cox and D.C. Dobson. Band structure optimization of two-dimensional photonic crystals in h-polarization. Journal of Computational Physics, 158(2):214–224, 2000.

    Article  MATH  ADS  CAS  Google Scholar 

  6. L.V. Gibiansky and O. Sigmund. Multiphase elastic composites with extremal bulk modulus. Journal of the Mechanics and Physics of Solids, 48(3):461–498, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. L.V. Gibiansky and S. Torquato. Thermal expansion of isotropic multiphase composites and polycrystals. Journal of the Mechanics and Physics of Solids, 45(7):1223–1252, 1997.

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  8. J.K. Guest and J.H. Prevost. Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. International Journal of Solids and Structures, 43(22–23):7028–7047, 2006.

    Article  MATH  Google Scholar 

  9. J.K. Guest and J.H. Prevost. Design of maximum permeability material structures. Computer Methods in Applied Mechanics and Engineering, 196(4–6):1006–1017, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Halkjær, O. Sigmund, and J.S. Jensen. Inverse design of phononic crystals by topology optimization. Zeitschrift für Kristallographie, 220(9–10):895–905, 2005.

    Article  Google Scholar 

  11. S. Halkjær, O. Sigmund, and J.S. Jensen. Maximizing band gaps in plate structures. Structural and Multidisciplinary Optimization, 32(4):263–275, 2006.

    Article  Google Scholar 

  12. U.D. Larsen, O. Sigmund, and S. Bouwstra. Design and fabrication of compliant micromech anisms and structures with negative Poisson's ratio. IEEE Journal of Microelectromechanical Systems, 6(2):99–106, 1997.

    Article  Google Scholar 

  13. J.-M. Lerat, N. Malljac, and O. Acher. Determination of the effective parameters of a meta material by field summation method. Journal of Applied Physics, 100(8):084908, 2006.

    Article  ADS  CAS  Google Scholar 

  14. J.B. Pendry, D. Shurig, and D.R. Smith. Controlling electromagnetic fields. Science, 312(5781):1780–2, 2006.

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  15. O. Sigmund. Materials with prescribed constitutive parameters: An inverse homogenization problem. International Journal of Solids and Structures, 31(17):2313–2329, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. O. Sigmund. Tailoring materials with prescribed elastic properties. Mechanics of Materials, 20:351–368, 1995.

    Article  Google Scholar 

  17. O. Sigmund. On the optimality of bone microstructure. In P. Pedersen and M.P. Bendsøe (Eds.), Synthesis in Bio Solid Mechanics, pages 221–234. IUTAM, Kluwer, 1999.

    Google Scholar 

  18. O. Sigmund. A new class of extremal composites. Journal of the Mechanics and Physics of Solids, 48(2):397–428, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. O. Sigmund and K. Hougaard. Geometrical properties of optimal photonic crystals. Physical Review Letters, 100(15):153904, April 18 2008.

    Article  PubMed  ADS  CAS  Google Scholar 

  20. O. Sigmund and J.S. Jensen. Systematic design of phononic band gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 361:1001–1019, 2003.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. O. Sigmund and S. Torquato. Composites with extremal thermal expansion coefficients. Applied Physics Letters, 69(21):3203–3205, 1996.

    Article  ADS  CAS  Google Scholar 

  22. O. Sigmund and S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6):1037–1067, 1997.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  23. O. Sigmund, S. Torquato, and I.A. Aksay. On the design of 1-3 piezocomposites using topology optimization. Journal of Materials Research, 13(4):1038–1048, 1998.

    Article  ADS  CAS  Google Scholar 

  24. E.C.N. Silva, J.S.O. Fonseca, and N. Kikuchi. Optimal design of piezoelectric microstructures. Computational Mechanics, 19(5):397–410, 1997.

    Article  MATH  ADS  Google Scholar 

  25. E.C.N. Silva, J.S.O. Fonseca, and N. Kikuchi. Optimal design of periodic piezocomposites. Computer Methods in Applied Mechanics and Engineering, 159(2):49–77, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  26. D.R. Smith and J.B. Pendry. Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B: Optical Physics, 23(3):391–403, 2006.

    Article  ADS  CAS  Google Scholar 

  27. D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E — Statistical, Nonlinear, and Soft Matter Physics, 71(3):1–11, 2005.

    Google Scholar 

  28. K. Svanberg. The Method of Moving Asymptotes — A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24:359–373, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Torquato, S. Hyun, and A. Donev. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. Journal of Applied Physics, 94(9):5748–5755, 2003.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Sigmund, O. (2009). Systematic Design of Metamaterials by Topology Optimization. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_16

Download citation

Publish with us

Policies and ethics