Skip to main content

Performance Characteristics for Sensors and Circuits Used to Program E. coli

  • Chapter

Abstract

The behavior of E. coli can be reprogrammed by the introduction of foreign segments of DNA. Three classes of genetic parts, termed sensors, circuits and actuators comprise the DNA programs. Sensors are gene products which allow the cell to detect physical or chemical information in its environment. Genetic engineers can use sensors directly from nature, modify them in some manner, or design them de novo to control cellular processes with extracellular or intracellular signals. Genetic circuits act to process information from sensors in order to dictate the behavior of the cell. They can be designed with combinations of “off the shelf” regulatory parts such as transcription factors and promoters, or in some cases can be used “as is” from nature. Finally, genetic circuits govern the expression of actuators, genes whose products perform some physical function to alter the state or the environment within which the cell exists. Using recent DNA synthesis and assembly technologies, genetic sensors, circuits and actuators can be combined to create programs that command cells to perform a series of tasks. This approach will transform the way that genetic engineers approach problems in biotechnology. This review covers the construction of genetic sensors and circuits for use in E. coli, as well as genetic methods to perturb their performance features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajo-Franklin CM, Drubin DA, Eskin JA et al. (2007) Rational design of memory in eukaryotic cells. Genes Dev 21(18):2271–6

    Article  PubMed  CAS  Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK et al. (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64(6):2240–6

    PubMed  CAS  Google Scholar 

  • Anderson JC, Clarke EJ, Arkin AP et al. (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355(4):619–27

    Article  PubMed  CAS  Google Scholar 

  • Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol Syst Biol 3:133

    Article  PubMed  CAS  Google Scholar 

  • Angeli D, Ferrell JE, Jr., Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101(7): 1822–7

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MR, Savageau MA, Myers JT et al. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113(5):597–607

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–9

    Article  PubMed  CAS  Google Scholar 

  • Backes H, Berens C, Helbl V et al. (1997) Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Biochemistry 36(18):5311–22

    Article  PubMed  CAS  Google Scholar 

  • Balagadde FK, Song H, Ozaki J et al. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187

    Article  PubMed  Google Scholar 

  • Balagadde FK, You L, Hansen CL et al. (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–40

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Paulsson J, Maheshri N et al. (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38(6):636–43

    Article  PubMed  CAS  Google Scholar 

  • Bashor CJ, Helman NC, Yan S et al. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319(5869):1539–43

    Article  PubMed  CAS  Google Scholar 

  • Bastin DA, Romana LK, Reeves PR (1991) Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol 5(9):2223–31

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Gerchman Y, Collins CH et al. (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–4

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Mehreja R, Thiberge S et al. (2004) Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A 101(17):6355–60

    Article  PubMed  CAS  Google Scholar 

  • Batchelor E, Goulian M (2006) Imaging OmpR localization in Escherichia coli. Mol Microbiol 59(6):1767–78

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner JW, Kim C, Brissette RE et al. (1994) Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. J Bacteriol 176(4):1157–63

    PubMed  CAS  Google Scholar 

  • Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–43

    Article  PubMed  CAS  Google Scholar 

  • Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786):590–3

    Article  PubMed  CAS  Google Scholar 

  • Bintu L, Buchler NE, Garcia HG et al. (2005a) Transcriptional regulation by the numbers: applications. Current Opinion in Genetics & Development 15(2):125–135

    Article  CAS  Google Scholar 

  • Bintu L, Buchler NE, Garcia HG et al. (2005b) Transcriptional regulation by the numbers: models. Current Opinion in Genetics & Development 15(2):116–124

    Article  CAS  Google Scholar 

  • Brenner K, Karig DK, Weiss R et al. (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44):17300–4

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Erfle M, Storella J (1985) Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem 260(6):3539–41

    PubMed  CAS  Google Scholar 

  • Buskirk AR, Landrigan A, Liu DR (2004) Engineering a ligand-dependent RNA transcriptional activator. Chem Biol 11(8):1157–63

    Article  PubMed  CAS  Google Scholar 

  • Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–93

    Article  PubMed  CAS  Google Scholar 

  • Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297(5583):1016–8

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Kadner RJ (2000) Effect of altered spacing between uhpT promoter elements on transcription activation. J Bacteriol 182(16):4430–6

    Article  PubMed  CAS  Google Scholar 

  • Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55(3): 712–23

    Article  PubMed  CAS  Google Scholar 

  • Collins CH, Leadbetter JR, Arnold FH (2006) Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol 24(6): 708–12

    Article  PubMed  CAS  Google Scholar 

  • Cox RS, 3rd, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145

    PubMed  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1983) Proc Natl Acad Sci USA 80:21–25

    Google Scholar 

  • de la Torre JC, Ortin J, Domingo E et al. (1984) Plasmid vectors based on Tn10 DNA: gene expression regulated by tetracycline. Plasmid 12(2):103–10

    Article  PubMed  Google Scholar 

  • Derr P, Boder E, Goulian M (2006) Changing the specificity of a bacterial chemoreceptor. J Mol Biol 355(5):923–32

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Cannon F, Kondorosi A (1976) Construction of a P plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Nature 260(5548):268–71

    Article  PubMed  CAS  Google Scholar 

  • Drubin DA, Way JC, Silver PA (2007) Designing biological systems. Genes Dev 21(3):242–54

    Article  PubMed  CAS  Google Scholar 

  • Dwyer MA, Looger LL, Hellinga HW (2003) Computational design of a Zn2+ receptor that controls bacterial gene expression. Proc Natl Acad Sci USA 100(20):11255–60

    Article  PubMed  CAS  Google Scholar 

  • El-Samad H, Khammash M (2006) Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys J 90(10):3749–3761

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–8

    Article  PubMed  CAS  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–53

    Article  PubMed  CAS  Google Scholar 

  • Endy D (2008) Genomics. Reconstruction of the genomes. Science 319(5867):1196–7

    Article  PubMed  CAS  Google Scholar 

  • Falcon CM, Matthews KS (2000) Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein. Biochemistry 39(36):11074–83

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE, Jr. (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–8

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE, Jr., Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280(5365):895–8

    Article  PubMed  CAS  Google Scholar 

  • Francetic O, Belin D, Badaut C et al. (2000) Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. Embo J 19(24):6697–703

    Article  PubMed  CAS  Google Scholar 

  • Frank DE, Saecker RM, Bond JP et al. (1997) Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J Mol Biol 267(5):1186–206

    Article  PubMed  CAS  Google Scholar 

  • Gambetta GA, Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci USA 98(19):10566–71

    Article  PubMed  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–42

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C et al. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–20

    Article  PubMed  CAS  Google Scholar 

  • Greber D, Fussenegger M (2007) Mammalian synthetic biology: engineering of sophisticated gene networks. J Biotechnol 130(4):329–45

    Article  PubMed  CAS  Google Scholar 

  • Guet CC, Elowitz MB, Hsing W et al. (2002) Combinatorial synthesis of genetic networks. Science 296(5572):1466–70

    Article  PubMed  CAS  Google Scholar 

  • Guzman LM, Belin D, Carson MJ et al. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–30

    PubMed  CAS  Google Scholar 

  • Ham TS, Lee SK, Keasling JD et al. (2006) A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol Bioeng 94(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420(6912):224–30

    Article  PubMed  CAS  Google Scholar 

  • Hawkins AC, Arnold FH, Stuermer R et al. (2007) Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol 73(18):5775–81

    Article  PubMed  CAS  Google Scholar 

  • Helbl V, Hillen W (1998) Stepwise selection of TetR variants recognizing tet operator 4C with high affinity and specificity. J Mol Biol 276(2):313–8

    Article  PubMed  CAS  Google Scholar 

  • Helbl V, Tiebel B, Hillen W (1998) Stepwise selection of TetR variants recognizing tet operator 6C with high affinity and specificity. J Mol Biol 276(2):319–24

    Article  PubMed  CAS  Google Scholar 

  • Henssler EM, Scholz O, Lochner S et al. (2004) Structure-based design of Tet repressor to optimize a new inducer specificity. Biochemistry 43(29):9512–8

    Article  PubMed  CAS  Google Scholar 

  • Hoch J, Silhavy T (1995) Two Component Signal Transduction. Washington, DC. ASM Press

    Google Scholar 

  • Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102(10):3581–6

    Article  PubMed  CAS  Google Scholar 

  • Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24(5):545–54

    Article  PubMed  CAS  Google Scholar 

  • Isaacs FJ, Dwyer DJ, Ding C et al. (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–7

    Article  PubMed  CAS  Google Scholar 

  • Isaacs FJ, Hasty J, Cantor CR et al. (2003) Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA 100(13):7714–9

    Article  PubMed  CAS  Google Scholar 

  • Jarboe LR, Grabar TB, Yomano LP et al. (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–61

    PubMed  CAS  Google Scholar 

  • Jose AM, Soukup GA, Breaker RR (2001) Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res 29(7):1631–7

    Article  PubMed  CAS  Google Scholar 

  • Kaern M, Blake WJ, Collins JJ (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5:179–206

    Article  PubMed  CAS  Google Scholar 

  • Kaern M, Elston TC, Blake WJ et al. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–64

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, Alon U (2004) Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117(6):713–20

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol Syst Biol 1:2005 0006

    Google Scholar 

  • Kalir S, McClure J, Pabbaraju K et al. (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292(5524):2080–3

    Article  PubMed  CAS  Google Scholar 

  • Kamionka A, Sehnal M, Scholz O et al. (2004) Independent regulation of two genes in Escherichia coli by tetracyclines and Tet repressor variants. J Bacteriol 186(13):4399–401

    Article  PubMed  CAS  Google Scholar 

  • Karig D, Weiss R (2005) Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol Bioeng 89(6):709–18

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76

    Article  PubMed  CAS  Google Scholar 

  • Khlebnikov A, Datsenko KA, Skaug T et al. (2001) Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147(Pt 12):3241–7

    PubMed  CAS  Google Scholar 

  • Khlebnikov A, Keasling JD (2002) Effect of lacY expression on homogeneity of induction from the P(tac) and P(trc) promoters by natural and synthetic inducers. Biotechnol Prog 18(3):672–4

    Article  PubMed  CAS  Google Scholar 

  • Khlebnikov A, Risa O, Skaug T et al. (2000) Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol 182(24):7029–34

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Barker DF, Ross DG et al. (1978) Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics 90(3):427–61

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Kaern M, Araki M et al. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA 101(22):8414–9

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Soukup GA, Kerr JN et al. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol 6(11):1062–71

    Article  PubMed  CAS  Google Scholar 

  • Laub MT, Biondi EG, Skerker JM (2007) Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. Methods Enzymol 423:531–48

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Papoutsakis ET (1999) Metabolic Engineering. Marcel Dekker, New York

    Google Scholar 

  • Levskaya A, Chevalier AA, Tabor JJ et al. (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438(7067):441–2

    Article  PubMed  CAS  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–6

    Article  PubMed  CAS  Google Scholar 

  • Li N, Cannon MC (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180(9):2450–8

    PubMed  CAS  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ et al. (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423(6936):185–90

    Article  PubMed  CAS  Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25(6):1203–10

    Article  PubMed  CAS  Google Scholar 

  • Lutz R, Lozinski T, Ellinger T et al. (2001) Dissecting the functional program of Escherichia coli promoters: the combined mode of action of Lac repressor and AraC activator. Nucleic Acids Res 29(18):3873–81

    Article  PubMed  CAS  Google Scholar 

  • Lynch SA, Desai SK, Sajja HK et al. (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14(2):173–84

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100(21):11980–5

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Itzkovitz S, Zaslaver A et al. (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356(5):1073–81

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol 334(2):197–204

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M et al. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–40

    Article  PubMed  CAS  Google Scholar 

  • McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94(3):814–9

    Article  PubMed  CAS  Google Scholar 

  • Michalowski CB, Short MD, Little JW (2004) Sequence tolerance of the phage lambda PRM promoter: implications for evolution of gene regulatory circuitry. J Bacteriol 186(23):7988–99

    Article  PubMed  CAS  Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–9

    Article  PubMed  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–99

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al. (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–7

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Wadler C, Cronan JE, Jr (2002) Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc Natl Acad Sci USA 99(11):7373–7

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Mayo AE (2004) Hysteresis vs. graded responses: the connections make all the difference. Sci STKE 2004(232):pe20

    Article  Google Scholar 

  • Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307(5717):1965–9

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H et al. (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E-coli. Science 291(5509):1790–1792

    Article  PubMed  CAS  Google Scholar 

  • Posfai G, Plunkett G, 3rd, Feher T et al. (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–6

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M, Gann A (2002) Genes & Signals. Cold Spring Harbor Laboratory Press, New York, 2002

    Google Scholar 

  • Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323(5):785–93

    Article  PubMed  CAS  Google Scholar 

  • Salis H, Tamsir A, Voigt CA (2009) Engineering bacterial sensors and signals. Bacterial sensing and Signaling (in press, 2009)

    Google Scholar 

  • Savageau MA (1974) Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252(5484):546–9

    Article  PubMed  CAS  Google Scholar 

  • Service RF (2007) Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest. Science 315(5818):1488–91

    Article  PubMed  CAS  Google Scholar 

  • Shahrezaei V, Ollivier JF, Swain PS (2008) Colored extrinsic fluctuations and stochastic gene expression. Mol Syst Biol 4:196

    Article  PubMed  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S et al. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–8

    Article  PubMed  CAS  Google Scholar 

  • Shetty RP, Endy D, Knight TF, Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(1):5

    Article  PubMed  Google Scholar 

  • Sia SK, Gillette BM, Yang GJ (2007) Synthetic tissue biology: tissue engineering meets synthetic biology. Birth Defects Res C Embryo Today 81(4):354–61

    Article  PubMed  CAS  Google Scholar 

  • Skerker JM, Perchuk BS, Siryaporn A et al. (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133(6):1043–54

    Article  PubMed  CAS  Google Scholar 

  • Skerker JM, Prasol MS, Perchuk BS et al. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3(10):e334

    Article  PubMed  CAS  Google Scholar 

  • Smith HO, Hutchison CA, 3rd, Pfannkoch C et al. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100(26):15440–5

    Article  PubMed  CAS  Google Scholar 

  • Smith TL, Sauer RT (1995) P22 Arc repressor: role of cooperativity in repression and binding to operators with altered half-site spacing. J Mol Biol 249(4):729–42

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999a) Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 7(7):783–91

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999b) Engineering precision RNA molecular switches. Proc Natl Acad Sci USA 96(7):3584–9

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (1999c) Relationship between internucleotide linkage geometry and the stability of RNA. Rna 5(10):1308–25

    Google Scholar 

  • Soukup GA, DeRose EC, Koizumi M et al. (2001) Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. Rna 7(4):524–36

    Article  PubMed  CAS  Google Scholar 

  • Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Sarai A, Rivera VM (1989) Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments. Proc Natl Acad Sci USA 86(2):439–43

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4(6):453–9

    Article  PubMed  CAS  Google Scholar 

  • Temme K, Salis H, Tullman-Ercek D et al. (2008) Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 377(1):47–61

    Article  PubMed  CAS  Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98(15):8614–9

    Article  PubMed  CAS  Google Scholar 

  • Topp S, Gallivan JP (2008) Random walks to synthetic riboswitches–a high-throughput selection based on cell motility. Chembiochem 9(2):210–3

    Article  PubMed  CAS  Google Scholar 

  • Tumpey TM, Basler CF, Aguilar PV et al. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745):77–80

    Article  PubMed  CAS  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–6

    Article  PubMed  CAS  Google Scholar 

  • Utsumi R, Brissette RE, Rampersaud A et al. (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245(4923):1246–9

    Article  PubMed  CAS  Google Scholar 

  • Vilar JM, Leibler S (2003) DNA looping and physical constraints on transcription regulation. J Mol Biol 331(5):981–9

    Article  PubMed  CAS  Google Scholar 

  • Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17(5):548–57

    Article  PubMed  CAS  Google Scholar 

  • Wagner R (2000) Transcription regulation in prokaryotes. Oxford University Press, Oxford, New York

    Google Scholar 

  • Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5(1):34–42

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Delgado A, Gunsalus RP et al. (2002) A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. Mol Microbiol 44(3):709–19

    Article  PubMed  CAS  Google Scholar 

  • Weiss R (2001) Cellular Computation and Communications Using Engineered Genetic Regulatory Networks, Massachussetts Institute of Technology

    Google Scholar 

  • Weiss R, Homsy GE, Knight TF, Jr (1999) Towards in vivo digital circuits. DIMACS Workshop on Evolution as Computation 1:1–18

    Google Scholar 

  • Williams SB, Stewart V (1997) Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12. Mol Microbiol 26(5):911–25

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Coleman C, Nickerson CA (2007) Cloning and transfer of the Salmonella pathogenicity island 2 type III secretion system for studies of a range of gram-negative genera. Appl Environ Microbiol 73(18):5911–8

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4(10):1024–32

    Article  PubMed  CAS  Google Scholar 

  • Yen L, Svendsen J, Lee JS et al. (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431(7007):471–6

    Article  PubMed  CAS  Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci USA 99(26):16587–91

    Article  PubMed  CAS  Google Scholar 

  • You L, Cox RS, 3rd, Weiss R et al. (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428(6985):868–71

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ames BD, Tsai SC et al. (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72(4):2573–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tabor, J.J., Groban, E.S., Voigt, C.A. (2009). Performance Characteristics for Sensors and Circuits Used to Program E. coli . In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_19

Download citation

Publish with us

Policies and ethics