Skip to main content

Microbialites, Stromatolites, and Thrombolites

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Microbialite

Definition

Microbialites are “organosedimentary deposits that have accreted as a result of a benthic microbial community trapping and binding detrital sediment and/or forming the locus of mineral precipitation” (Burne and Moore, 1987, pp. 241–242).

Introduction

Microbial carbonates are produced by the interaction of microbial growth and metabolism, cell surface properties, and extracellular polymeric substances (EPS) with mineral precipitation and grain trapping. The early lithification that is essential for the accretion and preservation of benthic microbial carbonates is both biologically mediated and environmentally dependent. Consequently, microbialite history reflects not only microbial mat evolution, but also long-term changes in seawater and atmospheric chemistry that have influenced microbial metabolism and seawater carbonate saturation state.

Microbialites are in place benthic sediments produced by microbial processes. The term “microbialite” has been most widely...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Aitken, J. D., 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163–1178.

    Article  Google Scholar 

  • Aitken, J. D., and Narbonne, G. M., 1989. Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada. Palaios, 4, 384–388.

    Article  Google Scholar 

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W., 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718.

    Article  Google Scholar 

  • Armella, C., 1994. Thrombolitic-stromatolitic cycles of the Cambro-Ordovician boundary sequence, Precordillera Oriental Basin, western Argentina. In Bertrand-Sarfati, J., and Monty, C. (eds.), Phanerozoic Stromatolites II. Dordrecht: Kluwer, pp. 421–441.

    Chapter  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

    Article  Google Scholar 

  • Awramik, S. M., 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 174, 825–827.

    Article  Google Scholar 

  • Awramik, S. M., and Margulis, L., 1974. Stromatolite Newsletter, 2, 5.

    Google Scholar 

  • Awramik, S. M., and Riding, R., 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings National Academy of Science USA, 85, 1327–1329.

    Article  Google Scholar 

  • Awramik, S. M., and Sprinkle, J., 1999. Proterozoic stromatolites: the first marine evolutionary biota. Historical Biology, 13, 241–253.

    Article  Google Scholar 

  • Badger, M. R., Hanson, D., and Price, G. D., 2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biology, 29, 161–173.

    Article  Google Scholar 

  • Berner, R. A., and Kothavala, Z., 2001. GEOCARB III. A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301, 182–204.

    Article  Google Scholar 

  • Bertling, M., and Insalaco, E., 1998. Late Jurassic coral/microbial reefs from the northern Paris Basin - facies, palaeoecology and palaeobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 139–175.

    Article  Google Scholar 

  • Bertrand-Sarfati, J., 1976. An attempt to classify Late Precambrian stromatolite microstructure. In Walter, M. R. (ed.), Stromatolites. Amsterdam: Elsevier, pp. 251–259.

    Chapter  Google Scholar 

  • Bertrand-Sarfati, J., 1994. Siliciclastic-carbonate stromatolite domes in the Early Carboniferous of the Ajjers Basin (eastern Sahara, Algeria). In Bertrand-Sarfati, J., and Monty, C. (eds), Phanerozoic stromatolites II. Dordrecht: Kluwer, pp. 395–419.

    Chapter  Google Scholar 

  • Beukes, N. J., 1987. Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa. Sedimentary Geology, 54, 1–46.

    Article  Google Scholar 

  • Black, M., 1933. The algal sedimentation of Andros Island Bahamas. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 222, 165–192.

    Article  Google Scholar 

  • Bodiselitsch, B., Koeberl, C., Master, S., and Reimold, W. U., 2005. Estimating duration of Neoproterozoic snowball glaciations from Ir anomalies. Science, 308, 239–242.

    Article  Google Scholar 

  • Braga, J., and Martín, J. M., 2000. Subaqueous siliciclastic stromatolites a case history from Late Miocene beach deposits in the Sorbas Basin, SE Spain. In Riding, R., and Awramik, S. M. (eds), Microbial sediments, Berlin: Springer, pp. 226–232.

    Google Scholar 

  • Braga, J. C., Martín, J. M., and Riding, R., 1995. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, S.E. Spain. Palaios, 10, 347–361.

    Article  Google Scholar 

  • Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.

    Article  Google Scholar 

  • Bucher, W., 1918. On oölites and spherulites. Journal of Geology, 26, 593–609.

    Article  Google Scholar 

  • Buick, R., Groves, D. I., and Dunlop, J. S. R., 1995. Abiological origin of described stromatolites older than 3.2 Ga: comment and reply. Geology, 23, 191.

    Article  Google Scholar 

  • Burne, R. V., and Moore, L., 1987. Microbialites; organosedimentary deposits of benthic microbial communities. Palaios, 2, 241–254.

    Article  Google Scholar 

  • Cameron, B., Cameron, D., and Jones, J. R., 1985. Modern algal mats in intertidal and supratidal quartz sands, northeastern Massachusetts, USA. In Curren H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 35, pp. 211–235.

    Chapter  Google Scholar 

  • Corsetti, F. A., and Grotzinger, J. P., 2005. Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: Example from Noonday Dolomite, Death Valley, United States. Palaios, 20, 348–362.

    Article  Google Scholar 

  • Davis, R. A., 1968. Algal stromatolites composed of quartz sandstone. Journal of Sedimentary Petrology, 38, 953–955.

    Article  Google Scholar 

  • Decho, A. W., Visscher, P. T., and Reid, R. P., 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 71–86.

    Article  Google Scholar 

  • Dill, R. F., Kendall, C. G. St. C., and Shinn, E. A., 1989. Giant subtidal stromatolites and related sedimentary features. Field Trip Guidebook T373, 28th International Geological Congress, Washington, DC: American Geophysical Union, 33 pp.

    Google Scholar 

  • Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K., and Steinen, R. P., 1986. Giant subtidal stromatolites forming in normal salinity waters. Nature, 324, 55–58.

    Article  Google Scholar 

  • Draganits, E., and Noffke, N., 2004. Siliciclastic stromatolites and other microbially induced sedimentary structures in an Early Devonian barrier-island environment (Muth Formation, NW Himalayas). Journal of Sedimentary Research, 74, 191–202.

    Article  Google Scholar 

  • Dravis, J. L., 1983. Hardened subtidal stromatolites, Bahamas. Science, 219, 385–386.

    Article  Google Scholar 

  • Dromart, G., Gaillard, C., and Jansa, L. F., 1994. Deep-marine microbial structures in the Upper Jurassic of western Tethys. In Bertrand-Sarfati, J., and Monty, C. (eds), Phanerozoic Stromatolites II. Dordrecht: Kluwer, pp. 295–318.

    Chapter  Google Scholar 

  • Dupraz, C., and Strasser, A., 1999. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains). Facies, 4, 101–129.

    Article  Google Scholar 

  • Ezaki, Y., Liu, J., Nagano, T., and Adachi, N., 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime. Palaios, 23, 356–369.

    Article  Google Scholar 

  • Feldmann, M., and McKenzie, J. A., 1997. Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? Sedimentology, 44, 893–914.

    Article  Google Scholar 

  • Feldmann, M., and McKenzie, J. A., 1998. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios, 13, 201–212.

    Article  Google Scholar 

  • Ferris, F. G., Thompson, J. B., and Beveridge, T. J., 1997. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios, 12, 213–219.

    Article  Google Scholar 

  • Fischer, A. G., 1965. Fossils, early life, and atmospheric history. Proceedings of the National Academy of Sciences, 53, 1205–1215.

    Article  Google Scholar 

  • Flügel, E., 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin: Springer, xx + 976 pp.

    Google Scholar 

  • Garrett, P., 1970. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science, 169, 171–173.

    Article  Google Scholar 

  • Gebelein, C. D., 1974. Biological control of stromatolite microstructurc: implications for Precambrian time stratigraphy. American Journal of Science, 274, 575–598.

    Article  Google Scholar 

  • Gerdes, G., Krumbein, W. E., and Noffke, N., 2000. Evaporite microbial sediments. In R. Riding, R., and Awramik, S. M. (eds), Microbial Sediments. Berlin: Springer, pp. 196–208.

    Google Scholar 

  • Ginsburg, R. N., 1991. Controversies about stromatolites: vices and virtues. In Muller, D. W., McKenzie, J. A., and Weissert, H. (eds.), Controversies in Modern Geology; Evolution of Geological Theories in Sedimentology, Earth History and Tectonics, London: Academic Press, pp. 25–36.

    Google Scholar 

  • Ginsburg, R. N., Isham, L. B., Bein, S. J., and Kuperberg, J., 1954. Laminated algal sediments of South Florida and their recognition in the fossil record. Marine Laboratory, University of Miami, Coral Gables, Florida, Unpublished Report, 54–20, 33 pp.

    Google Scholar 

  • Grotzinger, J. P., 1986. Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geological Society of America Bulletin, 97, 1208–1231.

    Article  Google Scholar 

  • Grotzinger J. P., 1989a. Introduction to Precambrian reefs. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists Memoir 13, pp. 9–12.

    Google Scholar 

  • Grotzinger, J. P., 1989b. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. (eds.), Controls on Carbonate Platform and Basin Development. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication 44, pp. 79–106.

    Chapter  Google Scholar 

  • Grotzinger, J. P., 1990. Geochemical model for Proterozoic stromatolite decline. American Journal of Science, 290-A, 80–103.

    Google Scholar 

  • Grotzinger, J. P., and James, N. P., 2000. Precambrian carbonates: evolution of understanding. In Grotzinger, J. P., and James, N. P. (eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 67, pp. 3–20.

    Chapter  Google Scholar 

  • Grotzinger, J. P., and Kasting, J. F., 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101, 235–243.

    Article  Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10, 578–596.

    Article  Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Reviews of Earth and Planetary Sciences, 27, 313–358.

    Article  Google Scholar 

  • Grotzinger, J. P., and Read, J. F., 1983. Evidence for primary aragonite precipitation, lower Proterozoic (1.9-Ga) Rocknest Dolomite, Wopmay Orogen, Northwest Canada. Geology, 11, 710–713.

    Article  Google Scholar 

  • Grotzinger, J. P., and Rothman, D. R., 1996. An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425.

    Article  Google Scholar 

  • Gürich, G., 1906. Les spongiostromides du Viséen de la Province de Namur. Musée Royal d’Histoire Naturelle de Belgique, Mémoires, 3(4), 1–55, 13 pls.

    Google Scholar 

  • Hagadorn, J. W., and Bottjer, D. J., 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25, 1047–1050.

    Article  Google Scholar 

  • Hall, J., 1883. Cryptozoön, n.g.; Cryptozoön proliferum, nsp. New York State Museum of Natural History, 36th Annual Report of the Trustees, plate 6.

    Google Scholar 

  • Halley, R. B., 1976. Textural variation within Great Salt Lake algal mounds. In Walter, M. R. (ed.), Stromatolites, Developments in Sedimentology, 20, Amsterdam: Elsevier, pp. 435–445.

    Chapter  Google Scholar 

  • Häntzschel, W., and Reineck, H.-E., 1968. Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 37, 5–39.

    Google Scholar 

  • Harwood, G., 1990. ‘Sandstone stromatolites’ – an example of algal-trapping of sand grains from the Permian Yates Formation, New Mexico, U.S.A. Nottingham, England: 13th International Sedimentological Congress, Abstracts-Posters, p. 97.

    Google Scholar 

  • Helm, C., and Schülke, I., 1998. A coral-microbialite patch reef from the late Jurassic (florigemma-Bank, Oxfordian) of NW Germany (Süntel Mountains). Facies, 39, 75–104.

    Article  Google Scholar 

  • Helm, C., and Schülke, I., 2006. Patch reef development in the florigemma-Bank Member (Oxfordian) from the Deister Mts (NW Germany): a type example for Late Jurassic coral thrombolite thickets. Facies, 52, 441–467.

    Article  Google Scholar 

  • Hoffman, P. F., 1975. Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In Ginsburg, R. N. (ed.), Tidal Deposits. New York: Springer, pp. 257–265.

    Chapter  Google Scholar 

  • Hoffman, P. F., and Schrag, D. P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.

    Article  Google Scholar 

  • Hofmann, H. J., 1969. Attributes of stromatolites. Geological Survey of Canada Paper 69–39, 58 pp.

    Google Scholar 

  • Hofmann, H. J., 1973. Stromatolites: characteristics and utility. Earth Science Reviews, 9, 339–373.

    Article  Google Scholar 

  • Hofmann, H. A., 1998. Synopsis of Precambrian fossil occurrences in North America. In Lucas, S. B., and St-Onge, M. R. (co-ords), Geology of Canada, no. 7, pp. 271–376.

    Google Scholar 

  • Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I., 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111, 1256–1262.

    Article  Google Scholar 

  • Horodyski, R. J., 1982. Impressions of algal mats from the Middle Proterozoic Belt Supergroup, northwestern Montana, USA. Sedimentology, 29, 285–289.

    Article  Google Scholar 

  • Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R., 2000. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425–429.

    Article  Google Scholar 

  • Jackson, M. J., 1989. Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Area. Calgary: Canadian Society of Petroleum Geologists, Memoir 13, 64–71.

    Google Scholar 

  • James, N. P., and Gravestock, D. I., 1990. Lower Cambrian shelf and shelf margin build-ups, Flinders Ranges, South Australia. Sedimentology, 37, 455–480.

    Article  Google Scholar 

  • Jansa L. F., Pratt, B. R., and Dromart, G., 1988. Deep water thrombolite mounds from the Upper Jurassic of offshore Nova Scotia. In Geldsetzer, H. H. J., James, N. P., and  Tebbutt, G. E. (eds.), Reefs, Canada and adjacent areas. Calgary: Canadian Society of Petroleum Geologists Memoir 13, 725–735.

    Google Scholar 

  • Jenkins, G. S., 2003. GCM greenhouse and high-obliquity solutions for early Proterozoic glaciation and middle Proterozoic warmth. Journal of Geophysical Research, 108, D3, 4118, doi:10.1029/2001JD001582, 2003.

    Google Scholar 

  • Kah, L. C., and Grotzinger, J. P., 1992. Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada. Palaios, 7, 305–315.

    Article  Google Scholar 

  • Kah, L. C., and Knoll, A. H., 1996. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology, 24, 79–82.

    Article  Google Scholar 

  • Kah, L. C., and Riding, R., 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35, 799–802.

    Article  Google Scholar 

  • Kahle, C. F., 2001. Biosedimentology of a Silurian thrombolite reef with meter-scale growth framework cavities. Journal of Sedimentary Research, 71, 410–422.

    Article  Google Scholar 

  • Kalkowsky, E., 1908. Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Deutschen geol. Gesellschaft, 60, 68–125, pls 4–11.

    Google Scholar 

  • Kennard, J. M., 1994. Thrombolites and stromatolites within shalecarbonate cycles, Middle–Late Cambrian Shannon Formation, Amadeus Basin, central Australia. In  Bertrand-Sarfati, J., and Monty, C. (eds.), Phanerozoic Stromatolites II. Dordrecht: Kluwer, pp. 443–471.

    Chapter  Google Scholar 

  • Kennard, J. M., and James, N. P., 1986. Thrombolites and stromatolites; two distinct types of microbial structures. Palaios, 1, 492–503.

    Article  Google Scholar 

  • Kershaw, S., Zhang, T., and Lan, G., 1999. A microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 146, 1–18.

    Article  Google Scholar 

  • Kiessling, W., 2002. Secular variations in the Phanerozoic reef ecosystem. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 72, pp. 625–690.

    Chapter  Google Scholar 

  • Kopaska-Merkel, D. C., 2003. “Reefs” as exploration targets in the Smackover Formation. Gulf Coast Association of Geological Sciences Transactions, 53, 411–421.

    Google Scholar 

  • Krumbein, W. E., 1983. Stromatolites - the challenge of a term in space and time. Precambrian Research, 20, 493–531.

    Article  Google Scholar 

  • Leinfelder, R. R., Nose, M., Schmid, D. U., and Werner, W., 1993. Microbial. crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies, 29, 195–229.

    Article  Google Scholar 

  • Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H., 1994. The origin of Jurassic reefs: current research developments and results. Facies, 31, 1–56.

    Article  Google Scholar 

  • Logan, B. W., 1961. Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. Journal of Geology, 69, 517–533.

    Article  Google Scholar 

  • Logan, B. W., Rezak, R., and Ginsburg, R. N., 1964. Classification and environmental significance of algal stromatolites. Journal of Geology, 72, 68–83.

    Article  Google Scholar 

  • Logan, B. W., Hoffman, P., and Gebelein, C. D., 1974. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. American Association of Petroleum Geologists, Memoir, 22, 140–194.

    Google Scholar 

  • Lowe, D. R., 1980. Stromatolites 3,400–3,500 Myr old from the Archean of Western Australia. Nature, 284, 441–443.

    Article  Google Scholar 

  • Lowe, D. R., 1983. Restricted shallow-water sedimentation of early Archean stromatolitic and avaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19, 239–283.

    Article  Google Scholar 

  • Lowe, D. R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387–390.

    Article  Google Scholar 

  • Lowe, D. R., 1995. Abiological origin of described stromatolites older than 3.2 Ga: comment and reply. Geology, 23, 191–192.

    Article  Google Scholar 

  • Mancini, E. A., Llinas, J. C., Parcell, W. C., Aurell, M., Badenas, B., Leinfielder, R. R., and Benson, D. J., 2004. Upper Jurassic thrombolite reservoir play, northern Gulf of Mexico. AAPG Bulletin, 88, 1573–1602.

    Article  Google Scholar 

  • Martín, J. M., Braga, J. C., and Riding, R., 1993. Siliciclastic stromatolites and thrombolites, late Miocene, S.E. Spain. Journal of Sedimentary Petrology, 63, 131–139.

    Google Scholar 

  • McLoughlin, N., Wilson, L. A., and Brasier, M. D., 2008. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology, 6, 95–105.

    Article  Google Scholar 

  • Merz, M. U. E., 1992. The biology of carbonate precipitation by cyanobacteria. Facies, 26, 81–102.

    Article  Google Scholar 

  • Montaggioni, L. F., and Camoin, G. F., 1993. Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology, 21, 149–152.

    Article  Google Scholar 

  • Monty, C. L. V., 1976. The origin and development of cryptalgal fabrics. In Walter, M. R. (ed.), Stromatolites, Developments in Sedimentology 20, Amsterdam: Elsevier, pp. 193–249.

    Chapter  Google Scholar 

  • Moore, L. S., and Burne, R. V., 1994. The modern thrombolites of Lake Clifton, western Australia. In Bertrand Sarfati, J., and Monty, C. L. (eds.), Phanerozoic Stromatolites II. Dordrecht: Kluwer Academic Publishers, pp. 3–29.

    Chapter  Google Scholar 

  • Noffke, N., Beukes, N., and Hazen, R., 2006. Microbially induced sedimentary structures in the 2.9 Ga old Brixton Formation, Witwatersrand Supergroup, South Africa. Precambrian Research, 146, 35–44.

    Article  Google Scholar 

  • Noffke, N., Beukes, N., Bower, D., Hazen, R. M., and Swift, D. J. P., 2008. An actualistic perspective into Archean worlds - (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 6, 5–20.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W. E., 1996. Microbially induced sedimentary structures – examples from modern sediments of siliciclastic tidal flats. Zentralblatt für Geologie und Paläontologie, Teil 1, 1995, Heft, 1/2, 307–316.

    Google Scholar 

  • Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R. R., Schmid, D. U., and Werner, W., 2003. Microbialite morphology, structure and growth: a model of the Upper Jurassic reefs of the Chay Peninsula (Western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 383–404.

    Article  Google Scholar 

  • Olivier, N., Lathuilière, B., and Thiry-Bastien, P., 2006. Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental considerations. Facies, 52, 113–127.

    Article  Google Scholar 

  • Parcell, W. C., 2002. Sequence stratigraphic controls on the development of microbial fabrics and growth forms - implication for reservoir quality distribution in the Upper Jurassic (Oxfordian) Smackover Formation, Eastern Gulf Coast, USA. Carbonates and Evaporites, 17, 166–181.

    Article  Google Scholar 

  • Petrov, P. Yu., and Semikhatov, M. A., 2001. Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia. Precambrian Research, 111, 257–281.

    Article  Google Scholar 

  • Pia, J., 1927. Thallophyta. In Hirmer, M. (ed.), Handbuch der Paläobotanik 1, Munich: Oldenbourg, pp. 31–136.

    Google Scholar 

  • Playford, P. E., and Cockbain, A. E., 1976. Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In Walter, M. R. (ed.), Stromatolites. Amsterdam: Elsevier, pp. 389–411.

    Chapter  Google Scholar 

  • Pope, M. C., Grotzinger, J. P., and Schreiber, B. C., 2000. Evaporitic subtidal stromatolities produced by in situ precipitation: textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70, 1139–1151.

    Article  Google Scholar 

  • Porada, H., Ghergut, J., and Bouougri, E. H., 2008. Kinneyia-type wrinkle structures – critical review and model of formation. Palaios, 23, 65–77.

    Article  Google Scholar 

  • Pratt, B. R., 1982a. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Research, 52, 1203–1227.

    Article  Google Scholar 

  • Pratt, B. R., 1982b. Stromatolite decline – a reconsideration. Geology, 10, 512–515.

    Article  Google Scholar 

  • Pratt, B. R., and James, N. P., 1982. Cryptalgal-metazoan bioherms of early Ordovician age in the St. George Group, western Newfoundland. Sedimentology, 29, 543–569.

    Article  Google Scholar 

  • Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and DesMarais, D. J., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.

    Article  Google Scholar 

  • Reis, O. M., 1908. Kalkowsky: Ueber Oölith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 2, 114–138.

    Google Scholar 

  • Reitner, J., 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia); formation and concepts. Facies, 29, 3–39.

    Article  Google Scholar 

  • Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Wörheide, G., and Gautret, P., 2000. Organic and biogeochemical patterns in cryptic microbialites. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments, Berlin: Springer, pp. 149–160.

    Google Scholar 

  • Ridgwell, A. J., Kennedy, M. J., and Caldeira, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science, 302, 859–862.

    Article  Google Scholar 

  • Riding, R., 1977. Skeletal stromatolites. In Flügel, E. (ed.), Fossil Algae, Recent Results and Developments, Berlin: Springer-Verlag, pp. 57–60.

    Chapter  Google Scholar 

  • Riding, R., 1991. Classification of microbial carbonates. In Riding, R., (ed.), Calcareous algae and stromatolites. Berlin: Springer-Verlag, pp. 21–51.

    Chapter  Google Scholar 

  • Riding, R., 1999. The term stromatolite: towards an essential definition. Lethaia, 32, 321–330.

    Article  Google Scholar 

  • Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(Suppl. 1), 179–214.

    Article  Google Scholar 

  • Riding, R., 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4, 299–316.

    Article  Google Scholar 

  • Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica, 61(2–3), 73–103.

    Google Scholar 

  • Riding, R., and Liang, L., 2005. Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 101–115.

    Article  Google Scholar 

  • Riding, R., Braga, J. C., and Martín, J. M., 1991a. Oolite stromatolites and thrombolites, Miocene, Spain: analogues of Recent giant Bahamian examples. Sedimentary Geology, 71, 121–127.

    Article  Google Scholar 

  • Riding, R., Awramik, S. M., Winsborough, B. M., Griffin, K. M., and Dill, R. F., 1991b. Bahamian giant stromatolites: microbial composition of surface mats. Geological Magazine, 128, 227–234.

    Article  Google Scholar 

  • Riding, R., Martín, J. M., and Braga, J. C., 1991c. Coral stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology, 38, 799–818.

    Article  Google Scholar 

  • Roddy, H. J., 1915. Concretions in streams formed by the agency of blue-green algae and related plants. Proceedings American Philosophical Society, 54, 246–258.

    Google Scholar 

  • Rowland, S. M., and Shapiro, R. S., 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 72, pp. 95–128.

    Chapter  Google Scholar 

  • Sami, T. T., and James, N. P., 1996. Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research, 66, 209–222.

    Google Scholar 

  • Schopf, J. W., and Klein, C., 1992. Glossary of technical terms. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge, UK: Cambridge University Press, pp. 1189–1204.

    Chapter  Google Scholar 

  • Schubert, J. K., and Bottjer, D. J., 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20, 883–886.

    Article  Google Scholar 

  • Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., and Benmore, W. C., 1979. Stromatolite morphogenesis - progress and problems. Canadian Journal of Earth Science, 16, 992–1015.

    Article  Google Scholar 

  • Serebryakov, S. N., (1976) Biotic and abiotic factors controlling the morphology of Riphean stromatolites. In Walter, M. R. (ed.), Stromatolites, Developments in Sedimentology 20, Amsterdam: Elsevier, pp. 321–336.

    Chapter  Google Scholar 

  • Shapiro, R. S., 2000. A comment on the systematic confusion of thrombolites. Palaios, 15, 166–169.

    Article  Google Scholar 

  • Shapiro, R. S., and Awramik, S. M., 2006. Favosamaceria cooperi new group and form: a widely dispersed, time-restricted thrombolite. Journal of Paleontology, 80, 411–422.

    Article  Google Scholar 

  • Sheldon, N. D., 2006. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147, 148–155.

    Article  Google Scholar 

  • Sherman, A. G., James, N. P., and Narbonne, G. M., 2000. Sedimentology of a late Mesoproterozoic muddy carbonate ramp, northern Baffin Island, Arctic Canada. In Grotzinger, J. P., and James, N. P. (eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 67, pp. 275–294.

    Chapter  Google Scholar 

  • Stal, L. J., van Gemerden, H., and Krumbein, W. E., 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology, 31, 111–125.

    Article  Google Scholar 

  • Steele, J. H., 1825. A description of the Oolitic Formation lately discovered in the county of Saratoga, and state of New-York. American Journal of Science, 9, 16–19, part of pl. 2.

    Google Scholar 

  • Sumner, D. Y., 1997a. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297, 455–487.

    Article  Google Scholar 

  • Sumner, D. Y., 1997b. Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios, 12, 302–318.

    Article  Google Scholar 

  • Sumner, D. Y., and Grotzinger, J. P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani platform, South Africa. Sedimentology, 51, 1–27.

    Article  Google Scholar 

  • Turner, E. C., Narbonne, G. M., and James, N. P., 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21, 259–262.

    Article  Google Scholar 

  • Turner, E. C., James, N. P., and Narbonne, G. M., 1997. Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie mountains, northwest Canada. Journal of Sedimentary Research, 67, 437–450.

    Google Scholar 

  • Turner, E. C., Narbonne, G. M., and James, N. P., 2000a. Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, Mackenzie Mountains, N.W.T., Canada. In Grotzinger, J. P., and James, N. P. (eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. SEPM special publication, 67, pp. 179–205.

    Chapter  Google Scholar 

  • Turner, E. C., James, N. P., and Narbonne, G. M., 2000b. Taphonomic control on microstructure in early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15, 87–111.

    Article  Google Scholar 

  • Visscher, P. T., Reid, R. P., and Bebout, B. M., 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.

    Article  Google Scholar 

  • Walcott, C. D., 1914. Cambrian geology and paleontology III: Precambrian Algonkian algal flora. Smithsonian Miscellaneous Collection, 64, 77–156.

    Google Scholar 

  • Walter, M. R., 1972. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology, 11, 190 pp, 33 pls.

    Google Scholar 

  • Walter, M. R., and Heys, G. R., 1985. Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Research, 29, 149–174.

    Article  Google Scholar 

  • Walter, M. R., Veevers, J. J., Calver, C. R., Gorjan, P., and Hill, A. C., 2000. Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100, 371–433.

    Article  Google Scholar 

  • Webb, G. E., 1987. Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas. Geological Society of America, Bulletin, 99, 686–698.

    Article  Google Scholar 

  • Webb, G. E., 2005. Quantitative analysis and paleoecology of earliest Mississippian microbial reefs, lowermost Gudman formation, Queensland, Australia: not just post-disaster phenomena. Journal of Sedimentary Research, 75, 875–894.

    Article  Google Scholar 

  • Whittle, G. L., Kendall, C. G. St. C., Dill, R. F., and Rouch, L., 1993. Carbonate cement fabrics displayed: a traverse across the margin of the Bahama Platform near Lee Stocking Island in the Exuma Cays. Marine Geology, 110, 213–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Riding, R. (2011). Microbialites, Stromatolites, and Thrombolites. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_196

Download citation

Publish with us

Policies and ethics