Skip to main content

Polycomb Complexes and the Role of Epigenetic Memory in Development

  • Chapter
Epigenomics

Abstract

The availability of a many important developmental genes is determined by events that occurred at earlier developmental stages. In such genes, some kind of cellular memory encodes an epigenetic mark that is transmitted through many rounds of cell division and determines whether or how the gene will respond to the presence of activators. Polycomb mechanisms are perhaps the best known example of such epigenetic regulators. Polycomb complexes can bind to Polycomb Response Elements and establish a repressive chromatin state but they also leave an epigenetic mark on the affected genes such that the chromatin state will be recreated in the following cell cycle. Polycomb mechanisms and the nature and propagation of the epigenetic mark during development are reviewed with particular attention to the genetic and molecular evidence available from the fruit fly in which they were first discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agger, K., Cloos, P. A. C., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A. E., and Helin, K. (2007). UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Annunziato, A. T. (2005). Split Decision: What happens to nucleosomes during DNA replication? J Biol Chem 280, 12065–12068.

    Article  PubMed  CAS  Google Scholar 

  • Beisel, C., Imhof, A., Greene, J., Kremmer, E., and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419, 857–862.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner , A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.

    Google Scholar 

  • Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H., and Helin, K. (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20, 1123–1136.

    Google Scholar 

  • Busturia, A., Wightman, C. D., and Sakonju, S. (1997). A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 124, 4343–4350.

    PubMed  CAS  Google Scholar 

  • Byrd, K. N., and Shearn, A. (2003). ASH1, a Drosphila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100, 11535–11540.

    Article  PubMed  CAS  Google Scholar 

  • Cao, R., Tsukada, Y.-I., and Zhang, Y. (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20, 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Cao, R., Wang, L., Wang, H., Xin, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-Group silencing. Science 298, 1039–1043.

    Google Scholar 

  • Cavalli, G., and Paro, R. (1998). The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518.

    Google Scholar 

  • Cavalli, G., and Paro, R. (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955–958.

    Article  PubMed  CAS  Google Scholar 

  • Chan, C.-S., Rastelli, L., and Pirrotta, V. (1994). A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J13, 2553–2564.

    PubMed  CAS  Google Scholar 

  • Cheng, N. N., Sinclair, D. A. R., Campbell, R. B., and Brock, H. W. (1994). Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster. Genetics 138, 1151–1162.

    PubMed  CAS  Google Scholar 

  • Cohen, B., Simcox, A.A. and Cohen, S.M. (1993) Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 117, 597–608

    PubMed  CAS  Google Scholar 

  • Czermin, B., Melfi. R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • de Napoles, M., Mermoud, J. E., Wakao, R., Tang, Y., A., Endoh, M., Appanah, R., Nesterova, T. B., Silva, J., Otte, A. P., Vidal, M., et al. (2004). Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7, 663–676.

    Article  PubMed  Google Scholar 

  • Déjardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., and Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533–538.

    Article  PubMed  Google Scholar 

  • Ebert, A., Schotta, G., Lein, S., Kubicek, S., Krauss, V., Jenuwein, T., and Reuter, G. (2004). Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18, 2973–2983.

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg, J. C., Lee, M. G., Schneider, J., Ilvarsonn, A., Shiekhattar, R., and Shilatifard, A. (2007). The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nat Struct Mol Biol 14, 344–346.

    Article  PubMed  CAS  Google Scholar 

  • Fauvarque, M.-O., and Dura, J.-M. (1993). polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 7, 1508–1520.

    Article  PubMed  CAS  Google Scholar 

  • Fischle, W., Wang, Y., Jacobs, S. A., Kim, Y., Allis, C. D., and Khorasanizadeh, S. (2003). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17, 1870–1881.

    Article  PubMed  CAS  Google Scholar 

  • Franke, A., DeCamillis, M., Zink, D., Cheng, N., Brock, H. W., and Paro, R. (1992). Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J11, 2941–2950.

    PubMed  CAS  Google Scholar 

  • Fritsch, C., Brown, J. L., Kassis, J. A., and Müller, J. (1999). The DNA-binding Polycomb group protein Pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126, 3905–3913.

    PubMed  CAS  Google Scholar 

  • Henikoff, S. (2008). Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9, 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Henry, K. W., Wyce, A., Lo, W.-S., Duggan, L. J., Emre, N. C. T., Kao, C.-F., Pillus, L., Shilatifard, A., Osley, M. A., and Berger, S. L. (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17, 2648–2663.

    Article  PubMed  CAS  Google Scholar 

  • Horard, B., Tatout, C., Poux, S., and Pirrotta, V. (2000). Structure of a Polycomb Response element and in vitro binding of Polycomb Group complexes containing GAGA factor. Mol Cell Biol 20, 3187–3197.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, P.W. and Hidalgo, A. (1993) Regulation of wingless transcription in the Drosophila embryo. Development 117:283–291

    PubMed  CAS  Google Scholar 

  • Kahn, T. G., Schwartz, Y. B., Dellino, G. I., and Pirrotta, V. (2006). Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J Biol Chem 281, 29064–29075.

    Article  PubMed  CAS  Google Scholar 

  • Kassis, J. A. (1994). Unusual properties of regulatory DNA from the Drosophila engrailed gene: three ”pairing-sensitive” sites within a 1.6 kb region. Genetics 136, 1025–1038.

    PubMed  CAS  Google Scholar 

  • Klymenko, T., and Müller, J. (2004). The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Reports 5, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Klymenko, T., Papp, B., Fischle, W., Kocher, T., Schelder, M., Fritsch, C., Wild, B., Wilm, M., Muller, J. (2006). A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20, 1110–1122.

    Article  PubMed  CAS  Google Scholar 

  • Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 22, 2893–2905.

    Article  Google Scholar 

  • Lan, F., Bayliss, P. E., Rinn, J. L., Whetstine, J. R., Wang, J. K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., et al. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. G., Villa, R., Trojer, P., Norman, J., Yan, K.-P., Reinberg, D., Croce, L. D., and Shiekhattar, R. (2007b). Demethylation of H3K27 Regulates Polycomb Recruitment and H2A Ubiquitination. Science 318, 447–450.

    Article  CAS  Google Scholar 

  • Lee, N., Maurange, C., Ringrose, L., and Paro, R. (2005). Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438, 234–237.

    Google Scholar 

  • Lee, N., Zhang, J., Klose, R. J., Erdjument-Bromage, H., Tempst, P., Jones, R. S., and Zhang, Y. (2007a). The trithorax-group protein Lid is a histone H3 trimethyl-Lys4-demethylase. Nat Struct Mol Biol 14, 341–343.

    Article  CAS  Google Scholar 

  • Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., Chevalier, B., Johnstone, S. E., Cole, M. F., Isono, K., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Levine, S. S., Weiss, A., Erdjument-Bromage, H., Shao, Z., Tempst, P., and Kingston, R. E. (2002). The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22, 6070–6078.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, A.-M., Colomb, S., Dejardin, J., Bantignies, F., and Cavalli, G. (2006). Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev 20, 501–513.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.-K., Koche, R. P. ,et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T., Krogan, N. J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J. F., and Shilatifard, A. (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98, 12902–12907.

    Article  PubMed  CAS  Google Scholar 

  • Min, J., Zhang, Y., and Xu, R.-M. (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated to Lys 27. Genes Dev 17, 1823–1828.

    Article  PubMed  CAS  Google Scholar 

  • Moazed, D. and O’Farrell, P.H. (1992) Maintenance of the engrailed expression pattern by Polycomb group genes in Drosophila. Development 116:805–810

    PubMed  CAS  Google Scholar 

  • Müller, J., Hart, C. M., Francis, N. J., Vargas, M. L., Sengupta, A., Wild, B., Miller, E. L., O’Connor, M. B., Kingston, R. E., and Simon, J. A. (2002). Histone methyltransferase activity of a Drosophila Polycomb Group repressor complex. Cell 111, 197–208.

    Article  PubMed  Google Scholar 

  • Nakagawa, T., Kajitani, T., Togo, S., Masuko, N., Ohdan, H., Hishikawa, Y., Koji, T., Matsuyama, T., Ikura, T., Muramatsu, M., and Ito, T. (2008). Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 22, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Mori, T., Tada, S., Krajewski, S., Rozovskaia, T., Wassell, R., Dubois, G., Mazo, A., Croce, C. M., and Canaani, E. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10, 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Négre, N., Hennetin, J., Sun, L. V., Lavrov, S., Bellis, M., White, K. P., and Cavalli, G. (2006). Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biology 4, e170.

    Article  PubMed  Google Scholar 

  • Nekrasov, M., Klymenko, T., Fraterman, S., Papp, B., Oktaba, K., Köcher, T., Cohen, A., Stunnenberg, H. G., Wilm, M., and Müller, J. (2007). Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J26, 4078–4088.

    Article  PubMed  CAS  Google Scholar 

  • Orlando, V., Jane, E. P., Chinwalla, V., Harte, P. J., and Paro, R. (1998). Binding of Trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J17, 5141–5150.

    Google Scholar 

  • Papp, B., and Müller, J. (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20, 2041–2054.

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta, V., Chan, C. S., McCabe, D., and Qian, S. (1995). Distinct Parasegmental and Imaginal Enhancers and the Establishment of the Expression Pattern of the Ubx Gene. Genetics 141, 1439–1450.

    PubMed  CAS  Google Scholar 

  • Poux, S., Horard, B., Sigrist, C. J. A., and Pirrotta, V. (2002). The Drosophila Trithorax protein is a coactivator required to prevent re-establishment of Polycomb silencing. Development 129, 2843–2893.

    Google Scholar 

  • Poux, S., Kostic, C., and Pirrotta, V. (1996). Hunchback-independent silencing of late Ubx enhancers by a Polycomb Group Response Element. EMBO J15, 4713–4722.

    PubMed  CAS  Google Scholar 

  • Ringrose, L., and Paro, R. (2007). Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Elsner, T., Gou, D., Kremmer, E., and Sauer, F. (2006). Noncoding RNAs of Trithorax Response Elements Recruit Drosophila Ash1 to Ultrabithorax. Science 311, 1118–1123.

    Article  PubMed  CAS  Google Scholar 

  • Saurin, A. J., Shao, Z., Erdjument-Bromage, H., Tempst, P., and Kingston, R. E. (2001). A Drosophila Polycomb group complex includes Zeste nd dTAFII proteins. Nature 412, 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B., and Cavalli, G. (2007). Genome regulation by Polycomb and Trithorax proteins. Cell 128, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y.B. and Pirrotta, V. (2008) Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol., 20, 266–273.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y. B., and Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8, 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y. B., Kahn, T. G., Nix, D. A., Li, X.-Y., Bourgon, R., Biggin, M., and Pirrotta, V. (2006). Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38, 700–705.

    Article  PubMed  CAS  Google Scholar 

  • Secombe, J., Li, L., Carlos, L., and Eisenman, R. N. (2007). The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21, 537–551.

    Article  PubMed  CAS  Google Scholar 

  • Squazzo, S. L., O’Geen, H., Komashko, V. M., Krig, S. R., Jin, V. X., Jang, S.-w., Margueron, R., Reinberg, D., Green, R., and Farnham, P. J. (2006). Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16, 890–900.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. K., Giadrossi, S., Casanova, M., Brookes, E., Vidal, M., Koseki, H., Brockdorff, N., Fisher, A. G., and Pombo, A. (2007). Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9, 1428–1435.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Katagiri, Z., Kawahashi, K., IKioussis, D., and Kitajima, S. (2007). Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397, 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Tolhuis, B., Muljrers, I., de Wit, E., Teunissen, H., Talhout, W., van Steensel, B., and van Lohuizen, M. (2006). Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38, 694–699.

    Article  PubMed  CAS  Google Scholar 

  • Tripoulas, N. A., Hersperger, E., La Jeunesse, D., and Shearn, A. (1994). Molecular genetic analysis of the Drosophila melanogaster gene absent or small homeotic discs 1 (ash1). Genetics 137, 1027–1038.

    PubMed  CAS  Google Scholar 

  • Villa, R., Pasini, D., Gutierrez, A., Morey, L., Occhionorelli, M., Viré, E., Nomdedeu, J. F., Jenuwein, T., Pelicci, P. G., Minucci, S., et al. (2007). Role of the Polycomb Repressive Complex 2 in Acute Promyelocytic Leukemia. Cancer Cell 11, 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Viré, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.-M. ,et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.

    Article  PubMed  Google Scholar 

  • Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R. S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Zhu, P., Wang, J. K., Pascual, G., Ohgi, K. A., Lozach, J., Glass, C. K., and Rosenfeld, M. G. (2008). Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29, 69–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schwartz, Y.B., Pirrotta, V. (2009). Polycomb Complexes and the Role of Epigenetic Memory in Development. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_13

Download citation

Publish with us

Policies and ethics