Skip to main content

Investigating the Role of Ammonia in Atmospheric Nucleation

  • Conference paper
Nucleation and Atmospheric Aerosols

Recent quantum chemical studies indicate that ammonia significantly enhances the formation of sulfuric acid–water clusters containing multiple sulfuric acid molecules. Our calculations on clusters containing up to three sulfuric acid molecules indicate a lower limit of 1:3 for the NH3:H2SO4mole ratio of nucleating clusters in atmospheric conditions. However, computations on NH3–H2SO4cluster cores also indicate an upper limit of 1:1, which is unlikely to be exceeded in any atmospheric conditions. Ammonia is also predicted to be only weakly bound to the HSO4− ion, and should thus not play a significant role in ion-induced nucleation of the sulfuric acid–water system.

Keywords Nucleation, sulfuric acid, ammonia, quantum chemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ianni, J.C. and Bandy, A.R., J. Phys. Chem. A, 103, 2801–2811 (1999).

    Article  Google Scholar 

  2. Clegg, S.L., Brimblecombe, P., and Wexler, A.S., J. Phys. Chem. A, 102, 2137–2154 (1998).

    Article  Google Scholar 

  3. Vehkamäki, H., Napari, I., Kulmala M., and Noppel., M., Phys. Rev. Lett., 93, 148501 (2004).

    Article  ADS  Google Scholar 

  4. Torpo, L., Kurtén, T., Vehkamäki, H., Sundberg, M.R., Laasonen, K., and Kulmala, M., manuscript in preparation (2007).

    Google Scholar 

  5. Weigend, F. and Häser, M., Theor. Chem. Acc., 97, 331–340 (1997).

    Google Scholar 

  6. Zhao, Y. and Truhlar, D.G., J. Phys. Chem. A, 108, 6908–6918 (2004).

    Article  Google Scholar 

  7. Kurtén, T., Torpo, L., Ding, C.-G., Vehkamäki, H., Sundberg, M.R., Laasonen, K., and Kulmala, M., J. Geophys. Res., in press (2007).

    Google Scholar 

  8. Kurtén, T., Torpo, L., Sundberg, M.R., Kerminen, V.-M., Vehkamäki, H., and Kulmala, M., Atmos. Chem. Phys. Discuss., 7, 2937–2960 (2007).

    Article  ADS  Google Scholar 

  9. Feng, Y. and Penner, J.E., J. Geophys. Res., 112, D01304, doi:10.1029/2005JD006404 (2007).

    Google Scholar 

  10. Kurtén, T., Noppel, M., Vehkamäki, H., Salonen, M., and Kulmala, M, submitted to Boreal Env. Res. (2007).

    Google Scholar 

  11. Frisch, M.J., et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, USA (2004).

    Google Scholar 

  12. Ahlrichs, R., Bär, M., Häser, M., Horn, H., and Kölmel, C., Chem. Phys. Lett., 162, 165–169 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kurtén, T. et al. (2007). Investigating the Role of Ammonia in Atmospheric Nucleation. In: O'Dowd, C.D., Wagner, P.E. (eds) Nucleation and Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6475-3_10

Download citation

Publish with us

Policies and ethics