Skip to main content

Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems

  • Chapter
Advances in Land Remote Sensing

This article describes the methods and problems associated to the estimation of canopy characteristics from remote sensing observations. It is illustrated over the solar spectral domain, with emphasis on LAI estimation using currently available algorithms developed for moderate resolution sensors. The principles of algorithms are first presented, distinguishing between canopy biophysical and radiometric data driven approaches that may use either radiative transfer models or experimental observations. Advantages and drawback are discussed with due attention to the operational character of the algorithms. Then the under-determination and ill-posedness nature of the inverse problem is described and illustrated. Finally, ways to improve the retrieval performances are presented, including the use of prior information, the exploitation of spatial and temporal constraints, and the interest in using holistic approaches based on the coupling of radiative transfer processes at several scales or levels. A conclusion is eventually proposed, discussing the three main components of retrieval approaches: retrieval techniques, radiative transfer models, and the exploitation of observations and ancillary information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuelgasim AA, Gopal S, Strahler AH (1998) Forward and inverse modelling of canopy directional reflectance using a neural network. Int. J. Remote Sens. 19(3):453–471

    Article  Google Scholar 

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. AJ, 76:300, 306

    Google Scholar 

  • Asrar G, Myeni RB, Kanemasu ET (1989) Estimation of plant canopy attributes from spectral reflectance measurements. Theory and Application of Optical Remote Sensing. J. Wiley, Indianapolis: 252–296

    Google Scholar 

  • Atkinson PM, Tatnall ARL (1997) Neural network in remote sensing. Int. J. Remote Sens. 18(4):699–709

    Article  Google Scholar 

  • Atzberger C (2004) Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 93:53–67

    Article  Google Scholar 

  • Bacour C (2001) Contribtion à la détermination des param ètres biophysiques des couverts végétaux par inversion de modèles deréflectance: analyse de sensibilit é et configurations optimales. PhD Thesis, Université Paris 7 - Denis Diderot, Paris (France), 206 pp

    Google Scholar 

  • Bacour C, et al. (2002a) Reliability of the estimation of vegetation characteristics by inversion ofthree canopy reflectance models on airborne POLDER data. Agronomie, 22:555–566

    Article  Google Scholar 

  • Bacour C, Jacquemoud S, Tourbier Y, Dechambre M, Frangi JP (2002b) Design and analysis of  numerical experiments to compare four canopy reflectance models. Remote Sens. Environ. 79:72–83

    Article  Google Scholar 

  • Bacour C, Baret F, B éal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: principles and valida tion. Remote Sens. Environ. 105:313–325

    Article  Google Scholar 

  • Banari A, Huete AR, Morin D, Zagolski F (1996) Effets de la couleur et de la brillance du sol sur les indices de végétation. Int. J. Remote Sens. 17(10):1885–1906

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment.Remote Sens. Environ. 35:161–173

    Google Scholar 

  • Baret F, Clevers JGPW, Steven MD (1995) The robustness of canopy gap fraction estimates from red and near infrared reflectances: a comparison of approaches. Remote Sens. Environ. 54:141–151

    Article  Google Scholar 

  • Baret F, Knyazikhin J, Weiss M, Myneni R, Pragnère A (1999) Overview of Canopy Biophysical Variables Retrieval Techniques. ALPS’99, Meribel, France, CNES, Paris

    Google Scholar 

  • Baret F, Weiss M, Troufleau D, Prévot L, Combal B (2000) Maximum information exploitation forcanopy characterisation by remote sensing. Remote sensing in agriculture. Aspects of Applied Biology. Association of Appied Biologists, pp. 71-82

    Google Scholar 

  • Baret F, et al. (2006a) Evaluation of the representativeness of networks of sites for the global validation and inter-comparison of land biophysical products. Proposition of the CEOS-BELMANIP. IEEE Trans.Geosci. Remote Sens. 44(7:special issue on global land product validation):1794-1803

    Google Scholar 

  • Baret F, et al. (2006b) Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Products (TOA VEG), INRA-CSE, Avignon

    Google Scholar 

  • Baret F, et al. (2007) LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: principles of the algorithm. Remote Sens. Environ. 110:275–286

    Google Scholar 

  • Berk A, et al. (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 65:367–375

    Article  Google Scholar 

  • Bicheron P, Leroy M (1999) A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model. Remote Sens. Environ. 67:251–266

    Article  Google Scholar 

  • Bonnans, JF, Gilbert, JC, Lemaréchal, C, and Sagastizábal, CA (2006) Numerical Optimization. Theoretical and Practical Aspects (Second Edition). Springer, New-York. 494pp.

    Google Scholar 

  • Braswell BH, et al. (1996) Extracting ecological and biophysical information from AVHRR optical data: an integrated algorithm based on inverse modeling. J. Geophys. Res. 101(D18):23335–23348

    Article  Google Scholar 

  • Bréon FM, Maignan F, Leroy M, Grant I (2002) Analysis of hot spot directional signatures measured from space. J. Geophys. Res. 107(D16):AAC 1 1–15

    Article  Google Scholar 

  • Chen JM, Leblanc SG (1997) A four-scale bidirectional reflectance model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 35:1316–1337

    Article  Google Scholar 

  • Chen JM, et al. (2002) Derivation and validation of Canada wide coarse resolution leaf area index maps using high resolution satellite imagery and ground masurements. Remote Sens. Environ. 80:165–184

    Article  Google Scholar 

  • Combal B, Ochshepkov SL, Sinyuk A, Isaka H (2000) Statistical framework of the inverse problem in the retrieval of vegetation parameters. Agronomie 20:65–77

    Article  Google Scholar 

  • Combal B, Baret F, Weiss M (2001) Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 22:2–15

    Google Scholar 

  • Combal B, et al. (2002) Retrieval of canopy biophysical variables from bi-directional reflectance data. Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 84:1–15

    Google Scholar 

  • Danson FM, Rowland CS, Baret F (2003) Training a neural network with a canopy reflectance model to estimate crop leaf area index. Int. J. Remote Sens. 24(23):4891–4905

    Article  Google Scholar 

  • Deng F, Chen JM, Chen M, Pisek J (2006) Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 44(8):2219–2229

    Article  Google Scholar 

  • Faivre R, Fischer A (1997) Predicting crop reflectances using satellite data observing mixed pixels. J. Agric., Biol. Environ. Stat. 2:87–107

    Article  Google Scholar 

  • Fang H, Liang S (2005) A hybrid inversion method for mapping leaf area index from MODISdata: experiments and application to broadleaf and needleleaf canopies. Remote Sens. Environ. 94:405–424

    Article  Google Scholar 

  • Fang H, Liang S, Kuusk A (2003) Retrieving leaf area index using a genetic algorithm with acanopy radiative transfer model. Remote Sens. Environ. 85:257–270

    Article  Google Scholar 

  • Fernandes R, Leblanc SG (2005) Parametric (modified least squares) and non parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurements errors. Remote Sens. Environ. 95:303–316

    Article  Google Scholar 

  • Gao W, Lesht BM (1997) Model inversion of satellite-measured reflectance obtaining surface biophysical and bidirectional characteristics of grassland. Remote Sens. Environ. 59:461–471

    Article  Google Scholar 

  • Garabedian P (1964) Partial differential equations. Wiley, New York, 672pp.

    Google Scholar 

  • Garrigues S, Allard D, Baret F, Weiss M (2006) Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sens. Environ. 103:81–96

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete MM, Govaerts Y (1997) A semi-discrete model for the scattering of light by vegetation. J. Geophys. Res.

    Google Scholar 

  • Gobron N, Pinty B, Verstraete M, Govaerts Y (1999) Level 2 vegetation index algorithm theoreticalBasis. Joint Research Center, Ispra, Italy

    Google Scholar 

  • Gobron N, Pinty B, Verstraete M, Widlowski JL (2000) Advanced vegetation indices optimized for upcoming sensors: design, performances and applications. IEEE Trans. Geosci. Remote Sens. 38 (6):2489–2505

    Article  Google Scholar 

  • Goel NS (1989) Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data. In: G. Asrar (Editor), Theory and Applications of Optical Remote Sensing. Wiley, New York, pp. 205–251

    Google Scholar 

  • Goel NS, Deering DW (1985) Evaluation of a canopy reflectance model for LAI estimation through its inversion. IEEE Trans. Geosci. Remote Sens. GE-23(5):674–684

    Article  Google Scholar 

  • Goel NS, Thompson RL (1984) Inversion of vegetation canopy reflectance models forestimating agronomic variables. III. Estimation using only canopy reflectance data as illustrated by the SUIT model. Remote Sens. Environ. 15:223–236

    Article  Google Scholar 

  • Goel NS, Strebel DE, Thompson RL (1984) Inversion of vegetation canopy reflectance models for estimating agronomic variables. II. Use of angle transforms and error analysis as illustrated bythe SUIT model. Remote Sens. Environ. 14:77–111

    Article  Google Scholar 

  • Gong P, Wang DX, Liang S (1999) Inverting a canopy reflectance model using a neural network. Int. J. Remote Sens. 20(1):111–122

    Article  Google Scholar 

  • Green RO, Boardman J (2001) Exploration of the relationship between information content and signal to noise ratio and spatial resolution in AVIRIS spectral data. In: RO Green (ed), AVIRIS Workshop, Pasadena, CA

    Google Scholar 

  • Hansen MC, et al. (2002) Towards an operational MODIS continuous firld percent tree coveralgorithm: examples using AVHRR and MODIS data. Remote Sens. Environ. 83:309–319

    Google Scholar 

  • Hansen MC, DeFries RS (2004) Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km Advanced Very High Resolution Radiometer (AVHRR) data for the years 1982-99. Ecosystems 7:695–716

    Article  Google Scholar 

  • Hapke B (1981) Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86:3039–3054

    Article  Google Scholar 

  • Huang D, et al. (2006) The importance of measurement error for deriving accurate reference leafarea index maps and validation of the MODIS LAI products. IEEE Trans. Geosci. Remote Sens. 44 (7):1866–1871

    Article  Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens. Environ. 25:295–309

    Article  Google Scholar 

  • Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59:440–451

    Article  Google Scholar 

  • Jacquemoud S (1993) Inversion of the PROSPECT+SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study. Remote Sens. Environ. 44:1–25

    Article  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. RemoteSens. Environ. 34:75–91

    Article  Google Scholar 

  • Jacquemoud S, Baret F, Hanocq JF (1992) Modeling spectral and directional soil reflectance. Remote Sens. Environ. 41:123–132

    Article  Google Scholar 

  • Jacquemoud S, Baret F, Andrieu B, Danson M, Jaggard K (1995) Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL model on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 52:163–172

    Google Scholar 

  • Jacquemoud S, Bacour C, Poilvé H, Frangi JP (2000) Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sens. Environ. 74:471–481

    Article  Google Scholar 

  • Kimes DS, Nelson RF, Manry MT, Fung AK (1998) Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int. J. Remote Sens. 19 (14):2639–2663

    Article  Google Scholar 

  • Kimes DS, Knyazikhin Y, Privette JL, Abuelgasim AA, Gao F (2000) Inversion methods for physically-based models. Remote Sens. Rev. 18:381–439

    Google Scholar 

  • Knyazikhin Y, et al. (1998a) Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res. 103(D24):32239–32256

    Article  Google Scholar 

  • Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998b) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res.103(D24):32257-32275Knyazikhin Y, et al. (1999) MODIS leaf area index (LAi) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document. http://eospso.gsfc.nasa.gov/atbd/modistables.html

  • Kötz B, Baret F, Poilv é H, Hill J (2005) Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 95:115–124

    Article  Google Scholar 

  • Kuusk A (1991a) Determination of vegetation canopy parameters from optical measurements. Remote Sens. Environ. 37:207–218

    Article  Google Scholar 

  • Kuusk A (1991b) The inversion of the Nilson-Kuusk canopy reflectance model, a test case. Int. Geosci. Remote Sens. Symp. (IGARSS’91), Helsinki, Finland, pp 1547–1550

    Google Scholar 

  • Kuusk A (1995) A fast invertible canopy reflectance model. Remote Sens. Environ. 51:342–350

    Article  Google Scholar 

  • Lacaze R (2004) Land Surface Level3 Algorithm: The inversion of a vegetation model by a neural network. short report. http://smsc.cnes.fr/POLDER/SCIEPROD/lsp2algol3.htm

  • Lacaze R (2005) POLDER-2 Land surface level 3 products. User manual and product validation, Medias/CNES, Toulouse

    Google Scholar 

  • Lauvernet C, Baret F, Hasco ët L, Buis S, Le Dimet FX (2008) Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization. Remote Sens. Environ. (in press)

    Google Scholar 

  • Leprieur C, Verstraete MM, Pinty B (1994) Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sens. Rev. 10:265–284

    Google Scholar 

  • Leshno M, Ya Lin V, Pinkus A, Shocken S (1993) Multilayer feedforward networks with non polynomial activation function can approximate any function. Neural Networks 6:861–867

    Article  Google Scholar 

  • Lewis P, et al. (2004) Calibration of and L-system model of winter wheat for remote sensing modelling and inversion. In: C. Godin (ed), 4th Int. Workshop on Functional-Structural Plant Models, Montpellier, France, pp 257–261

    Google Scholar 

  • Liang S (2004) Quantitative Remote Sensing of Land Surfaces. Wiley, Hoboken, NJ

    Google Scholar 

  • Liu W, et al. (2002) Relating soil surface moisture to reflectance. Remote Sens. Environ. 81:238–246

    Article  Google Scholar 

  • Lotsch A, Tian Y, Friedl MA, Myneni RB (2003) Land cover mapping in support of LAI and fPARretrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors. Int.J. Remote Sens. 24(10):1997–2016

    Article  Google Scholar 

  • Lucht W (1998) Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling. J. Geophys. Res. 103(D8):8763–8778

    Article  Google Scholar 

  • Makowski, D, Hillier, J, Wallach, D, Andrieu, B Jeuffroy, MH (2006) Parameter estimation for crop models. In D. Wallach, D. Makowski and J.W Jones (eds.), Working with dynamic crop models: evaluation, analysis, parameterization, and applications, pp. 101–149. Elsevier, Amsterdam

    Google Scholar 

  • Morisette J, et al. (2006) Validation of global moderate resolution LAI Products: a framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans. Geosci. Remote Sens. 44(7):1804–1817

    Article  Google Scholar 

  • Nilson T, Kuusk A (1989) A reflectance model for homogeneous plant canopy and its inversion. Remote Sens. Environ. 27:157–167

    Article  Google Scholar 

  • Pinty B, Verstraete MM (1991) Extracting information on surface properties from bidirectionalreflectance measurements. J. Geophys. Res. 96:2865–2874

    Article  Google Scholar 

  • Pinty B, Verstraete MM, Dickinson RE (1990) A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation. J. Geophys. Res. 95(D8):11767–11775

    Article  Google Scholar 

  • Price J (1994) How unique are spectral signatures. Remote Sens. Environ. 49:181–186

    Article  Google Scholar 

  • Price JC (1990) On the information content of soil reflectance spectra. Remote Sens. Environ. 33:113–121

    Article  Google Scholar 

  • Privette JL, Emery WJ, Schimel DS (1996) Inversion of a vegetation reflectance model with NOAAAVHRR data. Remote Sens. Environ. 58:187–200

    Article  Google Scholar 

  • Qiu J, Gao W, Lesht BM (1998) Inverting optical reflectance to estimate surface properties ofvegetation canopies. Int. J. Remote Sens. 19(4):641–656

    Article  Google Scholar 

  • Renders J-M, Flasse SP (1996) Hybrid methods using genetic algorithms for global optimization. IEEE Trans. Systems, Man, and Cybernetics 26:243–258

    Article  Google Scholar 

  • Richardson AJ, Wiegand CL, Wanjura DF, Dusek D, Steiner JL (1992) Multisite analyses ofspectral-biophysical data for sorghum. RSE, 41:71:82

    Google Scholar 

  • Rondeaux G, Steven MD, Baret F (1996) Optimization of soil adjusted vegetation indices. Remote Sens. Environ. 55:95–107

    Article  Google Scholar 

  • Roujean JL, Lacaze R (2002) Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: a pragmatic method and validtion. J. Geophys. Res. 107(D12):ACL 6 1–14

    Article  Google Scholar 

  • Saltelli, A, Tarantola, S, Campolongo, F, Ratto, M (2004) Sensitivity Analysis in practice. A guideto assessing scientific models. Wiley & Sons, Chichester. 217pp.

    Google Scholar 

  • Schwartz MD, Zimmermann G (2005) A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sens. Environ. 95:428–443

    Article  Google Scholar 

  • Sellers PJ (1985) Canopy reflectance photosynthesis and transpiration. Int. J. Remote Sens. 3:1335–1372

    Article  Google Scholar 

  • Shoshany M (1991) The equifinality of bidirectional distribution functions of various microstructures. Int. J. Remote Sens. 12(11):2267–2281

    Article  Google Scholar 

  • Smith JA (1992) LAI inversion from optical reflectance using neural network trained with multiple scattering model. In: WR (ed), IGARS’92. IEEE, South Shore Harbour Resort and Conference Center, Houston, TX, pp 757–759

    Google Scholar 

  • Smith JA (1993) LAI inversion using backpropagation neural network trained with multiple scattering model. IEEE Trans. Geosci. Remote Sens. 31(5):1102–1106

    Article  Google Scholar 

  • Soler CFS, Blaise F, de Reffye P (2001) A physiological plant growth simulation engine based onaccurate radiant energy transfer. 4116, INRIA, Montbonnot-Saint-Martin, France

    Google Scholar 

  • Stenberg P (2006) A note on the G-function for needle leaf canopies. Agric. For. Meteorol. 136 (1-2):76

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory problem and methods for model parameter estimation. Soc. Ind. Appl. Math., 358 pp

    Google Scholar 

  • Tarentola A (1987) Inverse problem theory. Methods for data fitting and model parameter estimation. Elsevier, New York

    Google Scholar 

  • Teillet PM, Gauthier RP, Staenz K, Fournier RA (1997) BRDF equifinality studies in the context of forest canopies. In: G Guyot, T Phulpin (eds), Physical Measurements and Signatures in Remote Sensing, Balkema, Rotterdam, Courchevel, France, pp 163–170

    Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL model. Remote Sens. Environ. 16:125–141

    Article  Google Scholar 

  • Verhoef, W (2002) Improved modeling of multiple scattering in leaf canopies: The model SAIL++. In J. A. Sobrino (ed.), 1st Int. Symp. on Recent Advances in Quantitative Remote Sensing,pp. 11–20, Universitat de Valencia, Spain

    Google Scholar 

  • Vermote EF, Tanr é D, Deuz é JL, Herman M, Mocrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35(3):675–686

    Article  Google Scholar 

  • Verstraete M, Pinty B (1996) Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 34(5):1254–1265

    Article  Google Scholar 

  • Weiss M, Baret F, Myneni R, Pragn ère A, Knyazikhin Y (2000) Investigation of a model inversion technique for the estimation of crop charcteristics from spectral and directional reflectance data. Agronomie 20:3–22

    Article  Google Scholar 

  • Weiss M, et al. (2002a) Validation of neural net techniques to estimate canopy biophysical variablesfrom remote sensing data. Agronomie 22:547–554

    Article  Google Scholar 

  • Weiss M, et al. (2002b) Evaluation of kernel-driven BRDF models for the normalization ofAlpilles/ReSeDA POLDER data. Agronomie 22:531–536

    Article  Google Scholar 

  • Wiegand CL, Gerberman AH, Gallo KP, Blad BL, Dusek D (1990) Multisite analyses of spectral-biophysical data for corn. Remote Sens. Environ. 33:1–16

    Article  Google Scholar 

  • Wiegand CL, et al. (1992) Multisite analysis of spectral biophysical data for wheat. Remote Sens.Environ. 42(1):1–22

    Article  Google Scholar 

  • Zhang Y, Shabanov N, Knyazikhin Y, Myneni RB (2002a) Assessing the information content ofmultiangle satellite data for mapping biomes I. Theory. Remote Sens. Environ. 80:435–446

    Article  Google Scholar 

  • Zhang Y, Tian Y, Myneni RB, Knyazikhin Y, Woodcock CE (2002b) Assessing the information content of multiangle satellite data for mapping biomes I. Statistical analysis. Remote Sens. Environ. 80:418–434

    Article  Google Scholar 

  • Zhang Q, et al. (2005) Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99 (3):357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Baret, F., Buis, S. (2008). Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_7

Download citation

Publish with us

Policies and ethics