Skip to main content

The role of the HGF regulatory factors in breast cancer

  • Chapter
Metastasis of Breast Cancer

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 11))

  • 1186 Accesses

Abstract

Hepatocyte growth factor (HGF) plays a pivotal role in the invasion and motility of breast cancer cells, and is also a key angiogenic and lymphangiogenic factor. The cytokine, which is primarily synthesised as inactive pro-HGF by stromal fibroblasts in breast tumours, requires activation to function as a biologically active factor. A number of pro-HGF activators have been identified in recent years, together with some naturally occurring activation inhibitors. This chapter discusses the impact of the HGF activators and activation inhibitors in the development and metastasis of breast cancer, and discusses their potential therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA. Global trends in breast cancer incidence and mortality 1973-1997. Int J Epidemiol 2005; 34: 405-412.

    Article  PubMed  Google Scholar 

  2. Boyle P, Ferlay J Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005; 16: 481-488.

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatomized rats. Biochem. Biophys. Res. Commun. 1984; 122: 1450-1459.

    Article  PubMed  CAS  Google Scholar 

  4. Michalopoulos G, Houck KA, Dolan ML, Leutteke NC. Control of hepatocyte replication by two serum factors. Cancer Res. 1984; 44: 4414-4419.

    PubMed  CAS  Google Scholar 

  5. Russel WE, McGowen JA, and Butcher NL. Partial characterization of an hepato- cyte growth factor from rat platelets. J. Cell Physiol. 1984; 119: 183-192.

    Article  Google Scholar 

  6. Stoker M and Perryman M. An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 1985; 77: 209-223.

    PubMed  CAS  Google Scholar 

  7. Gherardi E and Stoker M. Hepatocyte and scatter factor. Nature 1990; 346: 228

    Article  PubMed  CAS  Google Scholar 

  8. Weidner KM, Behrens J, Vandekerckhove J, and Birchmeier W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 1990; 111: 2097-2108.

    Article  PubMed  CAS  Google Scholar 

  9. Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y, and Birchmeier W. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl. Acad. Sci. USA. 1991; 88: 7001-7005.

    Article  PubMed  CAS  Google Scholar 

  10. Furlong RA, Takehara T, Taylor WG, Nakamura T, and Rubin JS. Comparison of biological and immunochemical properties indicates that scatter factor and hepatocyte growth factor are indistinguishable. J. Cell Sci. 1991; 100: 173-177.

    PubMed  CAS  Google Scholar 

  11. Nakamura T. Structure and function of hepatocyte growth factor. Prog. Growth Factor Res. 1990; 3: 67-85.

    Article  Google Scholar 

  12. Naldini L, Tamagnone L, Vigna E, Sachs M, Hartmann G, Birchmeier W, Daikuhara Y, Tsubouchi H, Blasi F, and Comoglio PM. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/ scatter factor. Embo J. 1992; 11: 4825-4833.

    PubMed  CAS  Google Scholar 

  13. Naldini L, Vigna E, Bardelli A, Follenzi A, Galimi F, and Comoglio PM. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J. Biol. Chem. 1995; 270: 603-611.

    Article  PubMed  CAS  Google Scholar 

  14. Gohda E, Matsunaga T, Kataoka H, Takebe T, and Yamamoto I. Induction of hepatocyte growth-factor in human skin fibroblasts by epidermal growth-factor, platelet-derived growth-factor and fibroblast growth-factor. Cytokine 1994; 6: 633-640.

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, and Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440-443.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto K, Takehara T, Inoue H, Hagiya M, Shimizu S, and Nakamura T. Deletion of kringle domains or the N-terminal hairpin structure in hepatocyte growth factor results in marked decreases in related biological activities. Biochem. Biophys. Res. Commun. 1991; 18: 691-699.

    Article  Google Scholar 

  17. Donate LE, Gherardi E, Srinivasan N, Sowdhamini R, Aparicio S, and Blundell TL. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci. 1994; 3: 2378-2394.

    Article  PubMed  CAS  Google Scholar 

  18. Funakoshi H and Nakamura T. Hepatocyte growth factor: from diagnosis to clinical applications. Clin Chim Acta 2003; 327: 1-2.

    Article  PubMed  CAS  Google Scholar 

  19. Birchmeier C, Birchmeier W, Gherardi E, and Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915-925.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen EM, Nigam SK, and Goldberg ID. Scatter factor and the c-Met receptor: a paradigm for mesenchymal/epithelial interaction. J. Cell Biol. 1994; 127: 1783-1787.

    Article  PubMed  CAS  Google Scholar 

  21. Birchmeier C, Birchmeier W, and Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat. 1996; 156: 217-226.

    Article  PubMed  CAS  Google Scholar 

  22. Eberg M, Yokoyama M, Friess H, Bulcher MW, and Korc M. Co-expression of the met protooncogene and hepatocyte growth factor in human pancreatic J. cancer. Cancer Res. 1994; 54: 5775-5778.

    Google Scholar 

  23. Joseph A, Weiss GH, Jin L, Fuchs A, Chowdhury S, O’Shaugnessy P, Goldberg ID, and Rosen EM. Expression of scatter factor in human bladder carcinoma. J. Natl. Cancer Inst. 1995; 87: 372-377.

    Article  PubMed  CAS  Google Scholar 

  24. Lamszuz K, Schmidt NO, Jin L, Laterra J, Zagzag D, Way D, Witte M, Weinland M, Goldberg ID, Westphal M, and Rosen EM. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int. J. Cancer 1998; 75: 19-28.

    Article  Google Scholar 

  25. Watanabe M, Fukutome K, Kato H, Murata M, Kawamura J, Shiraishi T, and Yatani R. Progression-linked overexpression of c-Met in prostatic intraepithelial neoplasia and latent as well as clinical prostate cancers. Cancer Lett. 1990; 141: 173-177.

    Article  Google Scholar 

  26. Parr C, Watkins G, Mansel RE, and Jiang WG. The hepatocyte growth factor regulatory factors and human breast cancer. Clin Cancer Res 2004; 10: 202-211.

    Article  PubMed  CAS  Google Scholar 

  27. Cooper CS, Park M, Blair DG, Tainsky MA, Heubner K, Croce CM, and Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311: 29-33.

    Article  PubMed  CAS  Google Scholar 

  28. Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, Paty PB, and Weiser MR. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2006 (in press).

    Google Scholar 

  29. Hansel DE, Rahman A, House M, Ashfaq R, Berg K, Yeo CJ, and Maitra A. Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin Cancer Res. 2004; 10: 6152-6158.

    Article  PubMed  CAS  Google Scholar 

  30. Knudsen BS, Gmyrek GA, Inra J, Scherr DS, Vaughan ED, Nanus DM, Kattan MW, Gerald WL, and Vande Woude GF. High expression of the Met receptor in prostate cancer metastasis to bone. Urology. 2002; 60: 1113-1117.

    Article  PubMed  Google Scholar 

  31. Peghini PL, Iwamoto M, Raffeld M, Chen YJ, Goebel SU, Serrano J, and Jensen RT. Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin Cancer Res. 2002; 8: 2273-2285.

    PubMed  CAS  Google Scholar 

  32. Qian CN, Guo X, Cao B, Kort EJ, Lee CC, Chen J, Wang LM, Mai WY, Min HQ, Hong MH, Vande Woude GF, Resau JH, and Teh BT. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res. 2002; 62: 589-596.

    PubMed  CAS  Google Scholar 

  33. Prat M, Narisham R, Crepaldi T, Nicotra MR, Natali PG, and Comoglio PM. The receptor encoded by the human c-MET oncogene is expressed in hepato- cytes, epithelial cells and solid tumours. Int. J. Cancer 1991; 49: 323-328.

    Article  PubMed  CAS  Google Scholar 

  34. Di Renzo MF, Narsiman RP, Olivero M, Bretti S, Giolano S, Medico E, Gaglia P, Zara P, and Comoglio PM. Expression of the MET/HGF receptor in normal and neoplastic human tissues. Oncogene 1991; 6: 1997-2003.

    PubMed  CAS  Google Scholar 

  35. Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C, and Comoglio PM. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene 1989; 4: 1383-1388.

    PubMed  CAS  Google Scholar 

  36. Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, and Comoglio PM. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 1991; 6: 501-504.

    PubMed  CAS  Google Scholar 

  37. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, and Aaronson SA. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802-804.

    Article  PubMed  CAS  Google Scholar 

  38. Faletto DL, Kaplan DR, Halverson DO, Rosen EM, and Vande Woude GF. Signal transduction in c-met mediated motogenesis. Experientia supplimentum 1993; 65: 107-130.

    CAS  Google Scholar 

  39. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, and Comoglio PM. A multifunctional docking site mediates signalling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994; 77: 261-271.

    Article  PubMed  CAS  Google Scholar 

  40. Ponzetto C, Bardelli A, Maina F, Longati P, Panayotou G, Dhand R, Waterfield MD, and Comoglio PM. A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth- factor scatter factor-receptor. Mol. Cell Biology. 1993; 13: 4600-4608.

    CAS  Google Scholar 

  41. Graziani A, Gramaglia D, Cantley LC, and Comoglio PM. The tyrosine- phosphorylated HGF/SF receptor associates with phosphatidyllinositol 3-kinase. J. Biol. Chem. 1991; 266: 22087-22090.

    PubMed  CAS  Google Scholar 

  42. Bardelli A, Maina F, Gout I, Fry MJ, Waterfield MD, Comoglio PM, and Ponzetto C. Autophosphorylation promotes complex-formation of recombinant HGF receptor with cytoplasmic effectors containing SH2 domains. Oncogene 1992; 7: 1973-1978.

    PubMed  CAS  Google Scholar 

  43. Bowers DC, Fan S, Walter K, Abounader JA, Rosen EM, and Laterra J. Scatter factor/hepatocyte growth factor activates AKT and protects against cytotoxic death in human gliomblasoma cell via PI3-kinase-dependant pathways. Cancer Res. 2000; 60: 4277-4283.

    PubMed  CAS  Google Scholar 

  44. Fan S, Ma YX, Wang JA, Yuan RQ, Meng Q, Laterra JJ, Goldberg ID, and Rosen EM. The cytokine scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signalling through phosphatidylinositol 3’ kinase. Oncogene 2000; 19: 2212-2223.

    Article  PubMed  CAS  Google Scholar 

  45. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, and Wong AJ. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 1996; 379: 560-564.

    Article  PubMed  CAS  Google Scholar 

  46. Korhonen JM, Said FA, Wong AJ, and Kaplan DR. Gab 1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells. J. Biol. Chem. 1999; 274: 37307-37314.

    Article  PubMed  CAS  Google Scholar 

  47. Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID, and Rosen EM. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)c-Met signalling for cell survival and DNA repair. Mol. Cell Biol. 2001; 21: 4968-4984.

    Article  PubMed  CAS  Google Scholar 

  48. Edakuni G, Sasatomi E, Satoh T, Tokunaga O, and Miyazaki K. Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol Int. 2001; 51: 172-178.

    Article  PubMed  CAS  Google Scholar 

  49. Harvey P, Warn A, Newman P, Perry LJ, Ball RY, and Warn RM. Immunore- activity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J. Path. 1996; 180: 389-394.

    Article  PubMed  CAS  Google Scholar 

  50. Tuck AB, Park M, Sterns EE, Boag A, and Elliott BE. Coexpression of hepatocyte growth factor and receptor (met) in human breast carcinoma. Am J Pathol 1996; 148: 225-232.

    PubMed  CAS  Google Scholar 

  51. Trusolino L, Serini G, Cecchini G, Besati C, Ambesi-Impiombato FS, Marchisio PC, and De Filippi R. J. Cell Biol. 1998; 142: 1145-1156.

    Article  PubMed  CAS  Google Scholar 

  52. Tam NNC, Chung SSM, Lee DTW, and Wong YC. Aberrant expression of hepatocyte growth factor and its receptor, c-Met, during hormone-induced prostatic carcinogenesis in the Noble rat. Carcinogenesis 2000; 21: 2183-2191.

    Article  PubMed  CAS  Google Scholar 

  53. Stracke ML and Liotta LA. The molecular basis of Cancer (Mendelson J, Howley PM, Israel MA and Liotta LA eds.), WB Saunders Company, Philadelphia. 1995; 233-247.

    Google Scholar 

  54. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Jiang WG, Hiscox S, Matsumoto K, and Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53: 35-69.

    Article  PubMed  Google Scholar 

  55. Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer. 2006; 119: 477-483.

    Article  PubMed  CAS  Google Scholar 

  56. Wang Y, Selden AC, Morgan N, Stamp GW, and Hodgson HJ. Hepatocyte growth factor/scatter factor expression in human mammary epithelium. Am J Pathol. 1994; 144: 675-682.

    PubMed  CAS  Google Scholar 

  57. Bussolino F, DiRenzo MF, and Ziche M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 1992; 119: 629-641.

    Article  PubMed  CAS  Google Scholar 

  58. Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG, Comoglio PM, and Di Renzo MF. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer. 1996; 74: 1862-1868.

    PubMed  CAS  Google Scholar 

  59. Trovato M, Vitarelli E, Grosso M, Alesci S, Benvenga S, Trimarchi F, and Barresi G. Immunohistochemical expression of HGF, c-MET and transcription factor STAT3 in colorectal tumors. Eur J Histochem. 2004; 48: 291-297.

    PubMed  CAS  Google Scholar 

  60. Gallego MI, Bierie B, and Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene. 2003; 22: 8498-8508.

    Article  PubMed  CAS  Google Scholar 

  61. Wojcik EJ, Sharifpoor S, Miller NA, Wright TG, Watering R, Tremblay EA, Swan K, Mueller CR, and Elliott BE. A novel activating function of c-Src and Stat3 on HGF transcription in mammary carcinoma cells. Oncogene. 2006; 25: 2773-2784.

    Article  PubMed  CAS  Google Scholar 

  62. Toi M, Taniguchi T, Ueno T, Asano M, Funata N, Sekiguchi K, Iwanari H, and Tominaga T. Significance of circulating hepatocyte growth factor level as a prognostic indicator in primary breast cancer. Clin Cancer Res 1998; 4: 659-664.

    PubMed  CAS  Google Scholar 

  63. Taniguchi T, Toi M, Inada K, Imazawa T, Yamamoto Y, Tominaga T. Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin Cancer Res 1995; 1: 1031-1034.

    PubMed  CAS  Google Scholar 

  64. Woodbury RL, Varnum SM, and Zangar RC. Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J Proteome Res 2002; 1: 233-237.

    Article  PubMed  CAS  Google Scholar 

  65. Elliot BE, Hung WL, Boag AH, and Tuck AB. The role of hepatocyte growth factor (scatter factor) in epithelial-mesenchymal transition in breast cancer. Can J Physiol Pharmacol 2002; 80: 91-102.

    Article  Google Scholar 

  66. Sheen-Chen SM, Liu YW, Eng HL, and Chou FF. Serum levels of hepatocyte growth factor in patients with breast cancer.Cancer Epidemiol Biomarkers Prev. 2005; 14: 715-717.

    Article  PubMed  CAS  Google Scholar 

  67. Narita T, Toi M, Sekiguchi K, Iwanari H, Matsuura N, Kimura N, Mitsuoka C, and Kannagi R. Hepatocyte growth factor in the sera of patients with gastrointestinal and breast cancer. Gan To Kagaku Ryoho 1997; 24: 2159-2162.

    PubMed  CAS  Google Scholar 

  68. Fukuura T, Mik, C, Inoue T, Matsumoto K, and Suzuki H. Serum hepatocyte growth factor as an index of disease status of patients with colorectal carcinoma. Br J Cancer 1998; 78: 454-459.

    PubMed  CAS  Google Scholar 

  69. Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T, and Shin S. Immunoreactive hepatocyte growth-factor is a strong and independent predictor of recurrence and survival in human breast-cancer. Cancer Res 1994; 54: 1630-1633.

    PubMed  CAS  Google Scholar 

  70. Soman NR, Correa P, Ruiz BA, and Wogan G. The TPR-met oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc. Natl. Acad. Sci. USA, 1991; 88: 4892-4896.

    Article  PubMed  CAS  Google Scholar 

  71. Di Renzo MF, Olivero M, Ferro S, Prat M, Bongarzone I, Pilotti S, Belfiore A, Costantino A, Vigneri R, Pierotti MA, and Comoglio PM. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene, 1992; 7: 2549-2553.

    PubMed  CAS  Google Scholar 

  72. Di Renzo MF, Olivero M, and Katsaros D. Overexpression of the met/HGF receptor in ovarian cancer. Int. J. Cancer 1994; 58: 658-662.

    Article  PubMed  CAS  Google Scholar 

  73. Di Renzo MF, Poulsom R, and Olivero M. Expression of the met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55: 1129-1138.

    PubMed  CAS  Google Scholar 

  74. Watanabe M, Fukutome K, Kato H, Murata M, Kawamura J, Shiraishi T, and Yatani R. Progression-linked overexpression of c-Met in prostatic intraepithelial neoplasia and latent as well as clinical prostate cancers. Cancer Lett. 1999; 141: 173-177.

    Article  PubMed  CAS  Google Scholar 

  75. Ruco LP, Stoppacciaro A, Ballarini F, Prat M, and Scarpino S. Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenic role in tumorigenesis. J. Pathol. 2001; 194: 4-8.

    Article  PubMed  CAS  Google Scholar 

  76. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, Salanti G, Richter T, Knudsen B, Vande Woude GF, Harbeck NC. Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer. 2005; 113: 678-682.

    Article  PubMed  CAS  Google Scholar 

  77. Tsarfaty I, Alvord WG, Resau JH, Altstock RT, Lidereau R, Bieche I, Bertrand F, Horev J, Klabansky RL, Keydar I, Vande Woude GF. Alteration of Met protooncogene product expression and prognosis in breast carcinomas. Anal Quant Cytol Histol 1999; 21: 397-408.

    PubMed  CAS  Google Scholar 

  78. Ocal IT, Dolled-Filhart M, D’Aquilla TG, Camp RL, and Rimm DL. Tissue microarray-based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 2003; 97: 1841-1848.

    Article  CAS  Google Scholar 

  79. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin C-Y, Dickson RB, Rimm DL, and Camp RL. Tissue microarray analysis of hepatocyte growth factor/met pathway components reveals a role for met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003; 63: 1101-1105.

    PubMed  CAS  Google Scholar 

  80. Ghoussoub RAD, Dillon DA, D’Aquila T, Rimm EB, Fearon ER, and Rimm DL. Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer 1998; 82: 1513-1520.

    Article  PubMed  CAS  Google Scholar 

  81. Jiang WG. HGF and its receptor as potential therapeutic targets in cancer. Current Oncology 2007 (in press).

    Google Scholar 

  82. Grey AM, Schlor AM, Rushton G, Ellis I, and Schlor SL. Purification of the migration stimulating factor produced by fetal and breast cancer patients fibroblasts. Proc Natl Acad Sci USA 1989; 86: 2438-2442.

    Article  PubMed  CAS  Google Scholar 

  83. Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE, von Eschenbach AC, and Chung LW. Fibroblast-mediated acceleration of human epithelial tumour growth in vivo. Proc Natl Acad Sci USA 1990; 87: 75-79.

    Article  PubMed  CAS  Google Scholar 

  84. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E, Matsumoto K, Nakamura T, and Tanaka M. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2004; 64: 3215-3222.

    Article  PubMed  CAS  Google Scholar 

  85. Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, and Birchmeier W. A functional domain in the heavy-chain of scatter factor hepatocyte growth-factor binds the c-met receptor and induces cell-dissociation but not mitogenesis. Proc Natl Acad Sci USA 1992; 89: 11574-11578.

    Article  PubMed  CAS  Google Scholar 

  86. Gak E, Taylor WG, Chan AM, and Rubin JS. Processing of hepatocyte growth factor to the heterodimeric form is required for biological activity. FEBS Lett 1992; 311: 17-21.

    Article  PubMed  CAS  Google Scholar 

  87. Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, and Kitamura N. Molecular-cloning and sequence-analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth-factor - structural similarity of the protease precursor to blood-coagulation factor-xii. J Biol Chem 1993; 268: 10024-10028.

    PubMed  CAS  Google Scholar 

  88. Lee S, Dickson RB, and Lin CY. Activation of Hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720-36725.

    Article  PubMed  CAS  Google Scholar 

  89. Naldini L, Vigna E, Bardelli A, Follenzi A, Galimi F, and Comoglio PM. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem 1995; 270: 603-611.

    Article  PubMed  CAS  Google Scholar 

  90. Herter S, Piper DE, Aaron W, Gabriele T, Cutler G, Cao P, Bhatt AS, Choe Y, Craik CS, Walker N, Meininger D, Hoey T, and Austin RJ. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J 2005; 390: 125-136.

    Article  PubMed  CAS  Google Scholar 

  91. Shimomura T, Denda K, Kitamura A, Kawaguchi T, Kito M, Kondo J, Kagaya S, Qin L, Takata H, Miyazawa K, and Kitamura N. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 6370-6376.

    Article  PubMed  CAS  Google Scholar 

  92. Kawaguchi T, Qin L, Shimomura T, Kondo J, Matsumoto K, Denda K, and Kitamura N. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 27558-27564.

    Article  PubMed  CAS  Google Scholar 

  93. Miyazawa K, Shimomura T, Daiji N, and Kitamura N. Proteolytic activation of hepatocyte growth factor in response to tissue injury. J. Biol. Chem. 1994; 269: 8966-8970.

    PubMed  CAS  Google Scholar 

  94. Miyazawa K, Shimomura T, and Kitamura N. Activation of hepatocyte growth factor, in the injured tissues, is mediated by hepatocyte growth factor activator. J. Biol. Chem. 1996; 271: 3615-3618.

    Article  PubMed  CAS  Google Scholar 

  95. Mizuno K, Tanoue Y, Okano I, Harano T, Takada K, and Nakamura T. Purification and characterization of hepatocyte growth-factor (HGF)-converting enzyme - activation of pro-HGF. Biochem. Biophys. Res. Commun. 1994; 198: 1161-1169.

    Article  PubMed  CAS  Google Scholar 

  96. Shimomura T, Miyazawa K, Komiyama Y, Hiraoka H, Naka D, Morimoto Y, and Kitamura N. Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator. Eur. J. Biochem. 1995; 229: 257-261.

    Article  PubMed  CAS  Google Scholar 

  97. Mars WM, Kim TH, Stolz DB, Liu ML, and Michalopoulos GK. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res. 1996; 56: 2837-2843.

    PubMed  CAS  Google Scholar 

  98. Kirchhofer D, Peek M, Li W, Stamos J, Eigenbrot C, Kadkhodayan S, Elliott JM, Corpuz RT, Lazarus RA, and Moran P. Tissue expression, protease specificity, and Kunitz domain functions of hepatocyte growth factor activator inhibitor-1B (HAI-1B), a new splice variant of HAI-1. J Biol Chem 2003; 278: 36341-36349.

    Article  PubMed  CAS  Google Scholar 

  99. Shimomura T, Ochiai M, Kondo J, and Morimoto Y. A novel protease obtained from FBS-containing culture supernatant, that processes single chain form hepatocyte growth factor to 2 chain form in serum-free culture. Cytotechnology 1992; 8: 219-229.

    Article  PubMed  CAS  Google Scholar 

  100. Shimomura T, Kondo J, Ochiai M, Naka D, Miyazawa K, Morimoto Y, and Kitamura N. Activation of the zymogen of hepatocyte growth factor by thrombin. J. Biol. Chem. 1993; 268: 22927-22932.

    PubMed  CAS  Google Scholar 

  101. Miyazawa K, Wang Y, Minoshima S, Shimuzu N, and Kitamura N. Structural organisation and chromosomal localization of the human hepatocyte growth factor activator gene. Phylogenetic and functional relationship with blood coagulation factor XII, urokinase, and tissue-type plasminogen activator. Eur. J. Biochem. 1998; 258: 355-361.

    Article  PubMed  CAS  Google Scholar 

  102. Furie B and Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-518.

    Article  PubMed  CAS  Google Scholar 

  103. Moriyama T, Kataoka H, Tsubouchi H, and Koono M. Concomitant expression of hepatocyte growth factor (HGF), HGF activator and c-met genes in human glioma cells in vitro. FEBS Lett. 1995; 372: 78-82.

    Article  PubMed  CAS  Google Scholar 

  104. Yamada T, Tsujioka Y, Taguchi J, Takahashi M, Tsuboi Y, and Shimomura T. White matter astrocytes produce hepatocyte growth factor activator inhibitor in human brain tissues. Exp. Neurology. 1998; 153: 60-64.

    Article  CAS  Google Scholar 

  105. Kataoka H, Hamasuna R, Itoh H, and Kitamura Nand Koono M. Activation of hepatocyte growth factor/scatter factor in colorectal carcinoma. Cancer Res. 2000; 60: 6148-6159.

    PubMed  CAS  Google Scholar 

  106. Parr C, and Jiang WG. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncology 2001; 19: 857-863.

    CAS  Google Scholar 

  107. Lin CY, Wang JK, Torri J, Dou L, Sang A, and Dickson RB. Characterisation of a novel membrane bound 80 kDa matrix degrading protease from human breast cancer cells. J. Biol. Chem. 1997; 272: 9147-9152.

    Article  PubMed  CAS  Google Scholar 

  108. Lin CY, Anders J, Johnson M, and Dickson RB. Purification and characteri- sation of a complex containing matripase and a kunitz-type serine protease inhibitor from human milk. J. Biol. Chem. 1999; 274: 18237-18242.

    Article  PubMed  CAS  Google Scholar 

  109. Lin CY, Anders J, Johnson M, Sang QA, and Dickson RB. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem. 1999; 274: 18231-18236.

    Article  PubMed  CAS  Google Scholar 

  110. Tanimoto H et al. Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol. 2001; 22: 104-114.

    Article  PubMed  CAS  Google Scholar 

  111. Kim MG et al. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics. 1999; 49: 420-428.

    Article  PubMed  CAS  Google Scholar 

  112. Takeuchi T, Shuman MA, and Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA. 1999; 96: 11054-11061.

    Article  PubMed  CAS  Google Scholar 

  113. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, and Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem. 2000; 275: 26333-26342.

    Article  PubMed  CAS  Google Scholar 

  114. List K, Szabo R, Molinolo A, Nielsen BS, and Bugge TH. Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol. 2006; 168: 1513-1525.

    Article  PubMed  CAS  Google Scholar 

  115. Oberst MD, Williams CA, Dickson RB, Johnson MD, and Lin CY. The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem. 2003; 278: 26773-26779.

    Article  PubMed  CAS  Google Scholar 

  116. Lee MS, Kiyomiya K, Benaud C, Dickson RB, and Lin CY. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol. 2005; 288: 932-941.

    Article  CAS  Google Scholar 

  117. Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY, Dickson RB, Kitamura H, and Miyazaki K. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Science 2000; 97: 1327-1334.

    Article  CAS  Google Scholar 

  118. List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med. 2006; 12: 1-7.

    Article  PubMed  CAS  Google Scholar 

  119. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, and Bugge TH. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene. 2002; 21: 3765-3779.

    Article  PubMed  CAS  Google Scholar 

  120. Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, and Fushiki T. A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun. 2001; 287: 995-1002.

    Article  PubMed  CAS  Google Scholar 

  121. Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY, and Taniguchi N. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem. 2002; 277: 16960-16967.

    Article  PubMed  CAS  Google Scholar 

  122. Denda, K., Shimomura, T., Kawaguchi, T., Miyazawa, K. and Kitamura, N. Functional characterisation of kunitz domains in hepatocyte growth factor activator inhibtor type-1. J. Biol. Chem. 2002; 277: 14053-14059.

    Article  PubMed  CAS  Google Scholar 

  123. Shimomura T, Denda K, Kawaguchi T, Matsumoto K, Miyazawa K, Kitamura N. Multiple sites of proteolytic cleavage to release soluble forms of hepatocyte growth factor activator inhibitor type 1 from a transmembrane form. J Biochem. 1999; 126: 821-828.

    PubMed  CAS  Google Scholar 

  124. Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, Johnson MD, Dickson RB, and Lin CY. HAI-1 regulates activation and expression of matrip- tase, a membrane-bound serine protease. Am J Physiol Cell Physiol. 2005; 289: 462-470.

    Article  CAS  Google Scholar 

  125. Benaud C, Dickson RB, and Lin CY. Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem. 2001; 268: 1439-1447.

    Article  PubMed  CAS  Google Scholar 

  126. Itoh H, Kataoka H, Hamasuna R, Kitamura K, and Koono M. Hepatocyte growth factor activator inhibitor type 2 (HAI-2) lacking the first Kunitz-type serine proteinase inhibitor domain is a predominant product in mouse but not in human, Biochem. Biophys. Res. Commun. 1999; 255: 740-748.

    Article  PubMed  CAS  Google Scholar 

  127. Qin L, Denda K, Shimomura T, Kawaguchi T, and Kitamura N. Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2. FEBS Lett. 1998; 436: 111-114.

    Article  PubMed  CAS  Google Scholar 

  128. Muller-Pillasch F, Wallrapp C, Bartels K, Varga G, Friess H, Buchler M, Adler G, and Gress TM. Cloning of a new Kunitz-type protease inhibitor with a putative transmembrane domain overexpressed in pancreatic cancer. Biochim. Biophys. Acta 1998; 1395: 88-95.

    PubMed  CAS  Google Scholar 

  129. Delaria KA, Muller DK, Marlor CW, Brown JE, Das RC, Roczniak SO, and Tamburini PP. Characterisation of placental bikunin, a novel human serine protease inhibitor. J. Biol. Chem. 1997; 272: 12209-12214.

    Article  PubMed  CAS  Google Scholar 

  130. Kirchhofer D, Peek M, Lipari MT, Billeci K, Fan B, and Moran P. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 2005; 579: 1945-1950.

    Article  PubMed  CAS  Google Scholar 

  131. Kataoka H, Shimomura T, Kawaguchi T, Hamasuna R, Itoh H, Kitamura, N, Miyazawa K, and Koono M. Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenviroenvironment. J. Biol. Chem., 2000 275: 40453-40462.

    Article  PubMed  CAS  Google Scholar 

  132. Kataoka H, Uchino H, Denda K, Kitamura N, Itoh H, Tsubouchi H, Nabeshima K, and Koono M. Evaluation of hepatocyte growth factor activator inhibitor expression in normal and malignant colonic mucosa. Cancer Lett. 1998; 128: 219-227.

    Article  PubMed  CAS  Google Scholar 

  133. Kataoka H, Itoh H, Kitamura N, Nabeshima K, and Koono M. Distribution of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in human tissues: Cellular surface localisation of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues. J. Histochem. Cytochem. 1999; 47: 673-682.

    PubMed  CAS  Google Scholar 

  134. Yamauchi M, Itoh H, Naganuma S, Koono M, Hasui Y, Osada Y, and Kataoka H. Expression of hepatocyte growth factor activator inhibitor type 2 (HAI-2) in human testis: identification of a distinct transcription start site for the HAI-2 gene in testis. Biol Chem. 2002; 383: 1953-1957.

    Article  PubMed  CAS  Google Scholar 

  135. Itoh H, Yamauchi M, Kataoka H, Hamasuna R, Kitamura N, and Koono M. Genomic structure and chromosomal mapping of the human hepatocyte growth factor activator inhibitor type 1 and 2 genes. Eur. J. Biochem. 2000; 267: 3351-3359.

    Article  PubMed  CAS  Google Scholar 

  136. Andreasen PA, Kjoller L, Christensen L, and Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997; 72: 1-22.

    Article  PubMed  CAS  Google Scholar 

  137. Declerk YA, and Imren S. Protease inhibitors: role and potential therapeutic use in human cancer. Eur. J. Cancer 1994; 14: 2170-2180.

    Article  Google Scholar 

  138. Takada S, Tsuchida T, Kobayashi M, and Koike K. Disruption of the function of tumor-suppressor gene p53 by the hepatitis-b virus x-protein and hepatocarcinogenesis J Cancer Res. Clin. Oncol. 1995; 121: 593-601.

    Article  PubMed  CAS  Google Scholar 

  139. Spyratos F, Martin P-M, Hacene K, Romain S, Andrieu C, Ferrero-Pous M, Deytieux S, Doussal VL, Tubiana-Hulin M, and Brunet M. Multiparametric prognostic evaluation of biological factors in primary breast cancer. J. Natl. Cancer. Inst. 1992; 84: 1266-1272.

    Article  PubMed  CAS  Google Scholar 

  140. Nagakawa O, Yamagishi T, Fujiuchi Y, Junicho A, Akashi T, Nagaike K, and Fuse H. Serum hepatocyte growth factor activator (HGFA) in benign prostatic hyperplasia and prostate cancer. Eur Urol. 2005; 48: 686-690.

    Article  PubMed  CAS  Google Scholar 

  141. Uchinokura S, Miyata S, Fukushima T, Itoh H, Nakano S, Wakisaka S, and Kataoka H. Role of hepatocyte growth factor activator (HGF activator) in invasive growth of human glioblastoma cells in vivo. Int J Cancer. 2006; 118: 583-592.

    Article  PubMed  CAS  Google Scholar 

  142. List K, Szabo R, Molinolo A, et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19: 1934-1950.

    Article  PubMed  CAS  Google Scholar 

  143. Benaud CM, Oberst M, Dickson RB, and Lin CY. Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis. 2002; 19: 639-649.

    Article  PubMed  CAS  Google Scholar 

  144. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, and Camp RL. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res. 2003; 63: 1101-1105.

    PubMed  CAS  Google Scholar 

  145. Cheng MF, Tzao C, Tsai WC, Lee WH, Chen A, Chiang H, Sheu LF, and Jin JS. Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: Correlation with clinicopathological parameters. Dis Esophagus. 2006; 19: 482-486.

    Article  PubMed  Google Scholar 

  146. Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U, and Kure EH.The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer. 2006; 6: 176.

    Article  PubMed  CAS  Google Scholar 

  147. Lee JW, Yong SS, Choi JJ, Lee SJ, Kim BG, Park CS, Lee JH, Lin CY, Dickson RB, and Bae DS. Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol. 2005; 36: 626-633.

    Article  PubMed  CAS  Google Scholar 

  148. Jin JS, Chen A, Hsieh DS, Yao CW, Cheng MF, and Lin YF. Expression of serine protease matriptase in renal cell carcinoma: correlation of tissue microarray immunohistochemical expression analysis results with clinicopathological parameters. Int J Surg Pathol. 2006; 14: 65-72.

    Article  PubMed  CAS  Google Scholar 

  149. Tanimoto H, Shigemasa K, Tian X, Gu L, Beard JB, Sawasaki T, and O’brien TJ. Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer. 2004; 91: 1834-1841.

    Google Scholar 

  150. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, Dickson RB, and Lin CY. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol. 2001; 158: 1301-1311.

    PubMed  CAS  Google Scholar 

  151. Hoang CD, D’Cunha J, Kratzke MG, Casmey CE, Frizelle SP, Maddaus MA, and Kratzke RA. Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest. 2004; 125: 1843-1852.

    Article  PubMed  CAS  Google Scholar 

  152. Santin AD, Zhan FH, Bellone S, Palmieri M, Cane S, Bignotti E, Anfossi S, Gokden M, Dunn D, Roman JJ, O’Brien TJ, Tian EM, Cannon MJ, Shaughnessy J, and Pecorelli S. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: Identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer. 2004; 112: 14-25.

    Article  PubMed  CAS  Google Scholar 

  153. Santin AD, Cane S, Bellone S, Bignotti E, Palmieri M, Las Casas LE, Anfossi S, Roman JJ, O’Brien T, and Pecorelli S. The novel serine protease tumorassociated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer. 2003; 98: 1898-1904.

    Article  PubMed  CAS  Google Scholar 

  154. Riddick ACP, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, Ball RY, and Edwards DR. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 2005; 92: 2171-2180.

    Article  PubMed  CAS  Google Scholar 

  155. Suzuki M, Kobayashi H, Kanayama N, et al. Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem 2004; 279: 14899-14908.

    Article  PubMed  CAS  Google Scholar 

  156. Galkin AV, Mullen L, Fox WD, et al. CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 2004; 61: 228-235.

    Article  PubMed  CAS  Google Scholar 

  157. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan- Shaw S, Jarrard DF, and Mukhtar H. A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev. 2006; 15: 217-227.

    Article  PubMed  CAS  Google Scholar 

  158. Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al-Nafussi A, Smyth JF, Gabra H, and Sellar GC. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res. 2002; 8: 1101-1107.

    PubMed  CAS  Google Scholar 

  159. Yamauchi M, Kataoka H, Itoh H, Seguchi T, Hasui Y, and Osada Y. Hepatocyte growth factor activator inhibitor types 1 and 2 are expressed by tubular epithelium in kidney and down-regulated in renal cell carcinoma. J. Urology. 2004; 171: 890-896.

    Article  CAS  Google Scholar 

  160. Parr C and Jiang WG. Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 2006; 119: 1176-1183.

    Article  PubMed  CAS  Google Scholar 

  161. Zeng L, Cao J, and Zhang X. Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol. 2005; 11: 6202-6207.

    PubMed  CAS  Google Scholar 

  162. Hamasuna R, Kataoka H, Meng JY, Itoh H, Moriyama T, Wakisaka S, and Koono M. Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. Int J Cancer. 2001; 93: 339-345.

    Article  PubMed  CAS  Google Scholar 

  163. Nagakawa O, Yamagishi T, Akashi T, Nagaike K, and Fuse H. Serum hepato- cyte growth factor activator inhibitor type I (HAI-I) and type 2 (HAI-2) in prostate cancer. Prostate. 2006; 66: 447-452.

    Article  PubMed  CAS  Google Scholar 

  164. Miyata S, Uchinokura S, Fukushima T, Hamasuna R, Itoh H, Akiyama Y, Nakano S, Wakisaka S, and Kataoka H. Diverse roles of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in the growth of glioblastoma cells in vivo. Cancer Lett. 2005; 227: 83-93.

    Article  PubMed  CAS  Google Scholar 

  165. Jiang WG. HGF antagonists in cancer treatment. Expert Reviews in Oncology, 2007, (in press).

    Google Scholar 

  166. Ueda K, Iwahashi M, Matsuura I, Nakamori M, Nakamura M, Ojima T, Naka T, Ishida K, Matsumoto K, Nakamura T, and Yamaue H. Adenoviral-mediated Gene transduction of the hepatocyte growth factor (HGF) antagonist, NK4, suppresses peritoneal metastases of gastric cancer in nude mice. Eur J Cancer 2004; 40: 2135-2142.

    Article  PubMed  CAS  Google Scholar 

  167. Kubota T, Fujiwara H, Amaike H, Takashima K, Inada S, Atsuji K, Yoshimura M, Matsumoto K, Nakamura T, Yamagishi H. Reduced HGF expression in subcutaneous CT26 tumor genetically modified to secrete NK4 and its possible relation with antitumor effects. Cancer Sci 2004; 95: 321-327.

    Article  PubMed  CAS  Google Scholar 

  168. Wen J, Matsumoto K, Taniura N, Tomioka D, and Nakamura T. Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther 2004; 11: 419-430.

    Article  PubMed  CAS  Google Scholar 

  169. Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, and Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res 2003; 9: 4578-4585.

    PubMed  CAS  Google Scholar 

  170. Davies G, Mason MD, Martin TA, Parr C, Watkins G, Lane J, Matsumoto K, Nakamura T, and Jiang WG. The HGF/SF antagonist NK4 reverses fibroblastand HGF-induced prostate tumor growth and angiogenesis in vivo. Int J Cancer 2003; 106: 348-354.

    Article  PubMed  CAS  Google Scholar 

  171. Martin TA, Parr C, Davies G, Watkins G, Lane J, Matsumoto K, Nakamura T, Mansel RE, and Jiang WG. Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis 2003; 24: 1317-1323.

    Article  PubMed  Google Scholar 

  172. Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, and Jiang WG. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Co 2001; 285: 1330-1337.

    Article  CAS  Google Scholar 

  173. Parr C, Hiscox S, Nakamura T, Matsumoto K, and Jiang WG. Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer. 2000; 85: 563-570.

    Article  PubMed  CAS  Google Scholar 

  174. Jiang WG, Hiscox SE, Parr C, Martin TA, Matsumoto K, Nakamura T, and Mansel RE. Antagonistic effect of NK4, a novel hepatocyte growth factor variant, on in vitro angiogenesis of human vascular endothelial cells. Clin Cancer Res 1999; 5: 3695-3703.

    PubMed  CAS  Google Scholar 

  175. Wang SY, Chen B, Zhan YQ, Xu WX, Li CY, Yang RF, Zheng H, Yue PB, Larsen SH, Sun HB, and Yang X. SU5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells. J Hepatol. 2004; 41: 267-273.

    Article  PubMed  CAS  Google Scholar 

  176. Hov H, Holt RU, Ro TB, Fagerli UM, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, and Borset M. A selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res. 2004; 10: 6686-6694.

    Article  PubMed  CAS  Google Scholar 

  177. Matsubara Y, Ichinose M, Yahagi N, Tsukada S, Oka M, Miki K, Kimura S, Omata M, Shiokawa K, Kitamura N, Kaneko Y, and Fukamachi H. Hepatocyte Growth Factor Activator: A possible regulator of morphogenesis during fetal development of the rat gastrointestinal tract. Biochem Biophys Res Commun 1998; 253: 477-484.

    Article  PubMed  CAS  Google Scholar 

  178. van Adelsberg J, Sehgal S, Kukes A, Brady C, Barasch J, Yang J, and Huan Y. Activation of hepatocyte growth factor (HGF) by endogenous HGF activator is required for metanephric kidney morphogenesis in vitro. J Biol Chem 2001; 18: 15099-15106.

    Article  Google Scholar 

  179. Mazzone M, Basilico C, Cavassa S, Pennacchietti S, Risio M, Naldini L, Comoglio PM, and Michieli P. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J Clin Invest 2004; 114: 1418-1432.

    PubMed  CAS  Google Scholar 

  180. Suzuki M, Kobayashi H, Tanaka Y, Hirashima Y, Kanayama N, Takei Y, Saga Y, Suzuki M, Itoh H, and Terao T. Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by overexpression of bikunin. Int J Cancer 2003; 104: 289-302.

    Article  PubMed  CAS  Google Scholar 

  181. Kobayashi H, Suzuki M, Kanayama N, Takashi N, Takigawa M, and Terao T. Suppression of urokinase receptor expression by bikunin is associated with inhibition of upstream targets of extracellular signal-regulated kinase-dependant cascade. Eur J Biochem 2002; 269: 3945-3957.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Parr, C., Jiang, W.G. (2007). The role of the HGF regulatory factors in breast cancer. In: Mansel, R.E., Fodstad, O., Jiang, W.G. (eds) Metastasis of Breast Cancer. Cancer Metastasis – Biology and Treatment, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5867-7_9

Download citation

Publish with us

Policies and ethics