Skip to main content

THE MECHANISMS AND APPLICATIONS OF SYMBIOTIC OPPORTUNISTIC PLANT SYMBIONTS

  • Conference paper
Book cover Novel Biotechnologies for Biocontrol Agent Enhancement and Management

Part of the book series: NATO Security through Science Series ((NASTA))

Abstract

A number of fungi have evolved a symbiotic life style with plants, including some organisms that include similar strains or species that are plant pathogens. Some are obligate symbionts such as ecto- or endomycorrhizal fungi, while others are endophytes that have free-living capabilities. Still others are highly competitive in soil and proliferate there. These are the opportunistic plant symbionts. Fungi in the genus Trichoderma have long been considered as biocontrol agents, but they are highly successful plant symbionts as well. The critical step for establishment of the symbiotic life style begins with root colonization and infection of outer cortical layers. A zone of chemical interaction is established; some of the Trichoderma signaling molecules are known. As a result of this interaction, the fungus is walled off; in rare cases where components of this communication are lacking, Trichoderma can become a pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chakravarty and T. Unestam, Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings, J. Phytopathology 120, 104–120 (1987).

    Google Scholar 

  2. R. G. Linderman, Mycorrhizal interactions with the rhizosphere microflora, the mycorrhizosphere effect, Phytopathology, 78, 366–371 (1988).

    Google Scholar 

  3. D. Ezra, W. M. Hess, and G. A. Strobel, New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus, Microbiology 150, 4023–4031 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. J. Mercier and D. C. Manker, Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus, Crop Protect. 24, 355–362 (2005).

    Article  Google Scholar 

  5. J. Mercier and J. L. Smilanick, Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus, Biol. Contr. 32, 401–407 (2005).

    Article  Google Scholar 

  6. L. J. Herr, Biocontrol of rhizoctonia crown and root rot of sugar beet by binucleate Rhizoctonia spp. and Laetisaria arvalis, Ann. App. Biol. 113, 107–118 (1988).

    Google Scholar 

  7. J. Hwang and D. M. Benson, Expression of induced systemic resistance in poinsettia cuttings against rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia, Biol. Contr. 27, 73–80 (2003).

    Article  Google Scholar 

  8. N. Benhamou, C. Garand, and A. Goulet, Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber, Appl. Environ. Microbiol. 68, 4044–4060 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. J. G. Fuchs, Y. Moenne-Loccoz, and G. DeFago, Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato, Plant Dis. 81, 492–496 (1997).

    Article  Google Scholar 

  10. B. J. Duijff, D. Pouhair, C. Olivain, C. Alabouvette, and P. Lemanceau, Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47, Eur. J. Plant Pathol. 104, 903–910 (1998).

    Article  Google Scholar 

  11. N. Koike, M. Hyakumachi, K. Kageyama, S. Tsuyumu, and N. Doke, Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: Lignification and superoxide generation, Eur. J. Plant Pathol. 107, 523–533 (2001).

    Article  CAS  Google Scholar 

  12. I. Chet, in Innovative Approaches to Plant Disease Control, edited by I. Chet (Wiley, New York, 1987), pp. 137–160.

    Google Scholar 

  13. R. Weindling, Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi, Phytopathology 24, 1153–1179 (1934).

    Google Scholar 

  14. Y.-C. Chang, Y.-C. Chang, R. Baker, O. Kleifeld, and I. Chet, Increased growth of plants in the presence of the biological control agent Trichoderma harzianum, Plant Dis. 70, 145–148 (1986).

    Google Scholar 

  15. G. E. Harman, Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22, Plant Dis. 84, 377–393 (2000).

    Article  Google Scholar 

  16. D. L. Lindsey and R. Baker, Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions, Phytopathology 57, 1262–1263 (1967).

    Google Scholar 

  17. C. R. Howell, Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts, Plant Dis. 87, 4–10 (2003).

    Article  Google Scholar 

  18. C. R. Howell, Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases, Phytopathology 96, 178–180 (2006).

    Article  PubMed  Google Scholar 

  19. I. Yedidia, N. Benhamou, and I. Chet, Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum, Appl. Environ. Microbiol. 65, 1061–1070 (1999).

    PubMed  CAS  Google Scholar 

  20. G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, Trichoderma species—Opportunistic, avirulent plant symbionts, Nature Rev. Microbiol. 2, 43–56 (2004).

    Article  CAS  Google Scholar 

  21. G. E. Harman and B. G. G. Donzelli, in Enhancing Biocontrol Agents and Handling Risks, edited by M. Vurro, J. Gressel, T. Butt, G. Harman, R. St. Leger, D. Nuss, and A. Pilgeram (IOS Press, Amsterdam, 2001), pp. 114–125.

    Google Scholar 

  22. I. Yedidia, A. K. Srivastva, Y. Kapulnik, and I. Chet, Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants, Plant Soil 235, 235–242 (2001).

    Article  CAS  Google Scholar 

  23. R. Weindling, Trichoderma lignorum as a parasite of other soil fungi, Phytopathology 22, 837–845 (1932).

    Google Scholar 

  24. I. Chet, G. E. Harman, and R. Baker, Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp., Microb. Ecol. 7, 29–38 (1981).

    Article  Google Scholar 

  25. I. Chet, N. Benhamou, and S. Haran, in Trichoderma and Gliocladium, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), vol. 2, pp. 153–172.

    Google Scholar 

  26. K. Brunner, C. K. Peterbauer, R. L. Mach, M. Lorito, S. Zeilinger, and C. P. Kubicek, The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol, Curr. Genet. 43, 289–295 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. A. Viterbo, M. Montero, O. Ramot, D. Friesem, E. Monte, A. Llobell, and I. Chet, Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203), Curr. Genet. 42, 114–122 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. S. Zeilinger, C. Galhaup, K. Payer, S. L. Woo, R. L. Mach, C. Fekete, M. Lorito, and C. P. Kubicek, Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host, Fung. Genet. Biol. 26, 131–140 (1999).

    Article  CAS  Google Scholar 

  29. J. Inbar, A. Menendez, and I. Chet, Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control, Soil Biol. Biochem. 28, 757–763 (1996).

    Article  CAS  Google Scholar 

  30. M. Schirmböck, M. Lorito, Y. L. Wang, C. K. Hayes, I. Arisan-Atac, F. Scala, G. E. Harman, and C. P. Kubicek, Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi, Appl. Environ. Microbiol. 60, 4364–4370 (1994).

    PubMed  Google Scholar 

  31. T. Benitez, C. Limon, J. Delgado-Jarana, and M. Rey, in Trichoderma and Gliocladium, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), vol. 2, pp. 101–127.

    Google Scholar 

  32. M. Lorito, in Trichoderma and Gliocladium, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), vol. 2., pp. 73–99.

    Google Scholar 

  33. J. P. Hubbard, G. E. Harman, and Y. Hadar, Effect of soilborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds, Phytopathology 73, 655–659 (1983).

    Google Scholar 

  34. Z. Lu, R. Tombolini, S. Woo, S. Zeilinger, M. Lorito, and J. K. Jansson, In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems, Appl. Environ. Microbiol. 70, 3073–3081 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. R. Lifshitz, M. T. Windham, and R. Baker, Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp., Phytopathology 76, 720–725 (1986).

    Google Scholar 

  36. C. Carsolio, N. Benhamou, S. Haran, C. Cortes, A. Gutierrez, I. Chet, and A. Herrera-Estrella, Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism, Appl. Environ. Microbiol. 65, 929–935 (1999).

    PubMed  CAS  Google Scholar 

  37. M. C. Limon, J. M. Lora, I. Garcia, J. De La Cruz, A. Llobell, T. Benitez, and J. A. Pintor-Toro, Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum, Curr. Genet. 28, 478–483 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. S. L. Woo, B. Donzelli, F. Scala, R. Mach, G. E. Harman, C. P. Kubicek, G. Del Sorbo, and M. Lorito, Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1, Molec. Plant-Microbe Interact. 12, 419–429 (1999).

    CAS  Google Scholar 

  39. C. R. Howell, in Trichoderma and Gliocladium, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), vol. 2, 173–184.

    Google Scholar 

  40. C. R. Howell and R. D. Stipanovic, Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum, Can. J. Microbiol. 29, 321–324 (1983).

    Article  CAS  Google Scholar 

  41. C. R. Howell, L. E. Hanson, R. D. Stipanovic, and L. S. Puckhaber, Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens, Phytopathology 90, 248–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. F. M. Scher, and R. Baker, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology 72, 1567–1574 (1982).

    CAS  Google Scholar 

  43. T. E. Stasz, G. E. Harman, and N. F. Weeden, Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum, Mycologia 80, 141–150 (1988).

    Article  Google Scholar 

  44. Y. Elad, D. Rav David, T. Levi, A. Kapat, B. Kirshner, E. Gorin, and A. Levine, in Modern Fungicides and Antifungal Compounds II, edited by H. Lyr (Intercept Ltd., Andover, Hampshire, UK, 1999), pp. 459–467.

    Google Scholar 

  45. Y. Elad and A. Kapat, The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea, Eur. J. Plant Pathol. 105, 177–189 (1999).

    Article  CAS  Google Scholar 

  46. C. R. Howell, Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp., Phytopathology 92, 177–180 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. G. E. Harman and A. L. Granett, Deterioration of stored pea seed: Changes in germination, membrane permeability and ultrastructure resulting from infection by Aspergillus ruber and from aging, Physiol. Plant Pathol. 2, 271–278 (1972).

    Google Scholar 

  48. R. J. Gorecki, and G. E. Harman, Effects of antioxidants on viability and vigour of ageing pea seeds, Seed Sci. Technol. 15, 109–118 (1987).

    CAS  Google Scholar 

  49. J. M. Norton and G. E. Harman, Responses of soil microorganisms to volatile exudates from germinating pea seeds, Can. J. Bot. 63, 1040–1045 (1985).

    Article  CAS  Google Scholar 

  50. T. Bjorkman, L. M. Blanchard, and G. E. Harman, Growth enhancement of shrunken-2 sweet corn with Trichoderma harzianum 1295-22: Effect of environmental stress, J. Am. Soc. Hort. Sci. 123, 35–40 (1998).

    Google Scholar 

  51. J. D. Anderson, B. A. Bailey, R. Taylor, A. Sharon, A. Avni, A. K. Mattoo, and Y. Fuchs, in Cellular and Molecular Aspects of the Plant Hormone Ethylene, edited by J.C. Pech, A. Latche’, and C. Balague (Kluwer, Dordecht, 1993), pp. 197–204.

    Google Scholar 

  52. T. Lotan and R. Fluhr, Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction, Plant Physiol. 93, 811–817 (1990).

    Article  PubMed  CAS  Google Scholar 

  53. Y. Fuchs, A. Saxena, H. R. Gamble, and J. D. Anderson, Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase, Plant Physiol. 89, 138–143 (1989).

    PubMed  CAS  Google Scholar 

  54. L. E. Hanson and C. R. Howell, Elicitors of plant defense responses from biological control strains of Trichoderma virens, Phytopathology 94, 171–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. C. Martinez, F. Blanc, E. Le Claire, O. Besnard, M. Nicole, and J. C. Baccou, Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum, Plant Phsiol. 127, 334–344 (2001).

    Article  CAS  Google Scholar 

  56. J. P. Bolar, J. L. Norelli, K. W. Wong, C. K. Hayes, G. E. Harman, and H. S. Aldwinckle, Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor, Phytopathology 90, 72–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. M. Lorito, S. L. Woo, I. G. Fernandez, G. Colucci, G. E. Harman, J. A. Pintor-Toro, E. Filippone, S. Muccifora, C. B. Lawrence, A. Zoina, S. Tuzun, and F. Scala, Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens, Proc. Natl. Acad. Sci. USA 95, 7860–7865 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. K. Brunner, S. Zeilinger, R. Ciliento, S. L. Woo, M. Lorito, C. P. Kubicek, and R. L. Mach, Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic resistance, Appl. Environ. Microbiol. 71, 3959–3965 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. S. L. Woo, F. Scala, M. Ruocco, and M. Lorito, The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants, Phytopathology 96, 181–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. S. Woo and M. Lorito, in Novel Biotechnologies for Biocontrol Agent Enhancement and Management, edited by M. Vurro and J. Gressel (Springer, Amsterdam, 2007).

    Google Scholar 

  61. E. A. Schmelz, H. T. Alborn, and J. H. Tumlinson, The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays, Planta-(Berlin) 214, 171–179 (2001).

    CAS  Google Scholar 

  62. T. C. J. Turlings, J. H. Tumlinson, and W. J. Lewis, Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps, Science 250, 1251–1253 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. C. Altomare, W. A. Norvell, T. Björkman, and G. E. Harman, Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22, Appl. Environ. Microbiol. 65, 2926–2933 (1999).

    PubMed  CAS  Google Scholar 

  64. G. E. Harman, in Proceedings of International Symposium on Biological Control of Plant Diseases for the New Century—Mode of Action and Application Technology, edited by D.D.-S. Tzeng and J.W. Huang (National Chung Hsing University, Taichung City, Taiwan, 2001), pp. 71–84.

    Google Scholar 

  65. G. L. Windham, M. T. Windham, and W. P. Williams, Effects of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction, Plant Dis. 73, 493–495 (1989).

    Article  Google Scholar 

  66. E. Sharon, M. Bar-Eyal, I. Chet, A. Herrera-Estrella, O. Kleifeld, and Y. Spiegel, Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91, 687–693 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. W. P. Piekielek and R. H. Fox, Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize, Agron. J. 84, 59–65 (1992).

    Article  CAS  Google Scholar 

  68. N. M. Viaene and G. S. Abawi, Damage threshold of Meloidogyne hapla to lettuce in organic soil, J. Nematol. 28, 537–545 (1996).

    PubMed  CAS  Google Scholar 

  69. R. S. Hussey and K. R. Barker, A comparison of methods of collecting inocula of Medoi- dogyne spp., including a new technique, Plant Dis. Repr. 57, 1025–1028 (1973).

    Google Scholar 

  70. A. Rousseau, N. Benhamou, I. Chet, and Y. Piche, Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum, Phytopathology 86, 434–443 (1996).

    Article  Google Scholar 

  71. L. E. Datnoff, S. Nemec, and K. Pernezny, Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices, Biol. Control 5, 427–431 (1995).

    Article  Google Scholar 

  72. S. A. Ahmed, C. P. Sanchez, and M. E. Candela, Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation, Eur. J. Plant Pathol. 106, 817–824 (2000).

    Article  Google Scholar 

  73. J. Bigirimana, G. De Meyer, J. Poppe, Y. Elad, and M. Hofte, Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum, Med. Fac. Landbouww. Univ. Gent 62, 1001–1007 (1997).

    Google Scholar 

  74. G. De Meyer, J. Bigirimana, Y. Elad, and M. Hofte, Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea, Eur. J. Plant Pathol. 104, 279–286 (1998).

    Article  Google Scholar 

  75. G. E. Harman, R. Petzoldt, A. Comis, and J. Chen, Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of this interaction on diseases caused by Pythium ultimum and Colletotrichum graminicola, Phytopathology 94, 147–153 (2004).

    Article  PubMed  Google Scholar 

  76. C.-T. Lo, T. F. Liao, and T. C. Deng, Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp., Phytopathology 90, S47 (2000).

    Google Scholar 

  77. I. Yedidia, M. Shoresh, Z. Kerem, N. Benhamou, Y. Kapulnik, and I. Chet, Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins, Appl. Environ. Microbiol. 69, 7343–7353 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. I. Yedidia, N. Benhamou, Y. Kapulnik, and I. Chet, Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203, Plant Physiol. Biochem. 38, 863–873 (2000).

    Article  CAS  Google Scholar 

  79. C. M. J. Pieterse, J. A. Van Pelt, J. Ton, S. Parchmann, M. J. Mueller, A. J. Buchala, J. P. Metraux, and L. C. Van Loon, Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production, Physiol. Molec. Plant Pathol. 57, 123–134 (2000).

    Article  CAS  Google Scholar 

  80. C. M. J. Pieterse, J. A. Van Pelt, S. C. M. Van Wees, J. Ton, K. M. Leon-Kloosterziel, J. J. B. Keurentjes, B. W. M. Verhagen, M. Knoester, I. Van der Sluis, P. A. H. M. Bakker, and L. C. Van Loon, Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression, Eur. J. Plant Pathol. 107, 51–61 (2001).

    Article  Google Scholar 

  81. M. Shoresh, I. Yedidia, and I. Chet, Involvement of the jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203, Phytopathology 95, 76–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. M. Shoresh, A. Gal-on, and I. Chet, Characterization of a MAPK gene from cucumber required for Trichoderma-conferred plant resistance, Plant Physiol. 142, 1169–1179 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. G. Dennis Jr., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, and R. A. Lempicki, DAVID: Database for annotation, visualization, and integrated discovery, Gen. Biol. 4, P3 (2003).

    Article  Google Scholar 

  84. R. Marra, P. Ambrosino, V. Carbone, F. Vinale, S. L. Woo, M. Ruocco, R. Ciliento, S. Lanzuise, I. Ferraioli, S. Gigante, D. Turra, V. Fogliano, F. Scala, and M. Lorito, Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach, Curr. Genet. 50, 307–321 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. G. E. Harman, Overview of mechanisms and uses of Trichoderma spp., Phytopathology 96, 190–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. E. A. Schmelz, H. T. Alborn, and J. H. Tumlinson, Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays, Physiol. Plant. 117, 403–412 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Harman, G.E., Shoresh, M. (2007). THE MECHANISMS AND APPLICATIONS OF SYMBIOTIC OPPORTUNISTIC PLANT SYMBIONTS. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_7

Download citation

Publish with us

Policies and ethics