Skip to main content

Meshless Methods for Numerical Solution of Partial Differential Equations

  • Chapter

Abstract

A popular research topic in numerical methods recently has been the development of meshless methods as alternatives to the traditional finite element, finite volume, and finite difference methods. The traditional methods all require some connectivity knowledge a priori, such as the generation of a mesh, whereas the aim of meshless methods is to sprinkle only a set of points or nodes covering the computational domain, with no connectivity information required among the set of points. Multiphysics and multiscale analysis, which is a common requirement for microsystem technologies such as MEMS and Bio-MEMS, is radically simplified by meshless techniques as we deal with only nodes or points instead of a mesh. Meshless techniques are also appealing because of their potential in adaptive techniques, where a user can simply add more points in a particular region to obtain more accurate results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods: an overview and recent developments”, Comput. Methods Appl. Mech. Engrg., 139, 3–47, 1996.

    Article  MATH  Google Scholar 

  2. S. Li and W.K. Liu, “Meshfree and particle methods and their applications”, Appl. Mech. Rev., 55, 1–34, 2002.

    Article  Google Scholar 

  3. S.N. Atluri, The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, 2002.

    Google Scholar 

  4. P. Lancaster and K. Salkauskas, “Surface generated by moving least squares methods”, Math. Comput., 37, 141–158, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element method: diffuse approximation and diffuse elements”, Comput. Mech., 10, 307–318, 1992.

    Article  MATH  Google Scholar 

  6. T. Belytschko, Y.Y. Lu, and L. Gu, “Element free galerkin methods”, Int. J. Numer. Methods Eng., 37, 229–256, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. T.J. Liszka and J. Qrkisz, “The finite difference method at arbitrary irregular grids and its application in applied mechanics”, Comput. Struct., 11, 83–95, 1980.

    Article  MATH  Google Scholar 

  8. T.J. Liszka, C.A. Duarte, and W.W. Tworzydlo, “hp-meshless cloud method”, Comput. Methods Appl. Mech. Eng., 139, 263–288, 1996.

    Article  MATH  Google Scholar 

  9. S.N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics”, Comput. Mech., 22, 117–127, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Onate, S. Idelsohn, O.C. Zienkiewicz, and R.L. Taylor, “A finite point method in computational mechanics. Applications to convective transport and fluid flow”, Int. J. Numer. Methods Eng., 39, 3839–3866, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Onate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, and C. Sacco, “A stabilized finite point method for analysis of fluid mechanics problems”, Comput. Methods Appl. Mech. Eng., 139, 315–346, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Babuska and J.M. Melenk, “The partition of unity method”, Int. J. Numer. Meth. Eng., 40, 727–758, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Breitkopf, A. Rassineux, G. Touzot, and P. Villon, “Explicit form and efficient computation of MLS shape functions and their derivatives”, Int. J. Numer. Methods Eng., 48(3), 451–466, 2000.

    Article  MATH  Google Scholar 

  14. JJ. Monaghan, “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrophys., 30, 543–574, 1992.

    Article  ADS  Google Scholar 

  15. W.K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, “Reproducing Kernel particle methods for structural dynamics”, Int. J. Numer. Methods Eng., 38, 1655–1679, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.-S. Chen, C. Pan, C. Wu, and W.K. Liu, “Reproducing Kernel particle methods for large deformation analysis of non-linear structures”, Comput. Methods Appl. Mech. Eng., 139, 195–227, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  17. N.R. Aluru, “A point collocation method based on reproducing Kernel approximations”, Int. J. Numer. Methods Eng., 47, 1083–1121, 2000.

    Article  MATH  Google Scholar 

  18. N.R. Aluru and G. Li, “Finite cloud method: a true meshless technique based on a fixed reproducing Kernel approximation”, Int. J. Numer. Methods Eng., 50(10), 10, 2373–2410, 2001.

    Article  MATH  Google Scholar 

  19. R.L. Hardy, “Multiquadric equations for topography and other irregular surfaces,$#x201D; J. Geophys. Res., 176, 1905–1915, 1971.

    Article  ADS  Google Scholar 

  20. E.J. Kansa, “Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — I, surface approximations and partial derivative estimates”, Comp. Math. Appl, 19, 127–145, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  21. E.J. Kansa, “Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — II, solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comp. Math. Appl, 19, 147–161, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  22. M.A. Golberg and C.S. Chen, “A bibliography on radial basis function approximation”, Boundary Elements Comm., 7, 155–163, 1996.

    Google Scholar 

  23. H. Wendland, “Piecewise polynomial, positive definite and compactly supported radial functions of minial degree”, Adv. Comput. Math., 4, 389–396, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. De and K.J. Bathe, “The method of finite spheres”, Comput. Meek, 25, 329–345, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. De and K.J. Bathe, “Towards an efficient meshless computational technique: the method of finite spheres”, Eng. Comput., 18, 170–192, 2001.

    Article  MATH  Google Scholar 

  26. X. Jin, G. Li, and N.R. Aluru, “On the equivalence between least-squares and Kernel approximation in meshless methods”, CMES: Comput. Model. Eng. Sci., 2(4), 447–462, 2001.

    MATH  MathSciNet  Google Scholar 

  27. J.H. Kane, Boundary Element Analysis in Engineering Continuum Mechanics, Prentice-Hall, 1994.

    Google Scholar 

  28. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations”, J. Comput. Phys., 73(2), 325–348, 1987.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. J.R. Phillips and J.K. White, “A precorrected-FFT method for electrostatic analysis of complicated 3-D structures”, IEEE Transact, on Comput.-Aided Des. of Integrated Circuits Sys., 16(10), 1059–1072, 1997.

    Article  Google Scholar 

  30. S. Kapur and D.E. Long, “IES3: a fast integral equation solver for efficient 3-dimensional extraction”, IEEE Computer Aided Design, 1997, Digest of Technical Papers 1997, IEE/ACM International Conference, 448–155, 1997.

    Google Scholar 

  31. V. Shrivastava and N.R. Aluru, “A fast boundary cloud method for exterior 2-D electrostatics”, Int. J. Numer. Methods Eng., 56(2), 239–260, 2003.

    Article  MATH  Google Scholar 

  32. Y.X. Mukherjee and S. Mukherjee, “The boundary node method for potential problems”, Int. J. Numer. Methods Eng., 40, 797–815, 1997.

    Article  MATH  Google Scholar 

  33. M.K. Chati and S. Mukherjee, “The boundary node method for three-dimensional problems in potential theory”, Int. J. Numer. Methods Eng., 47, 1523–1547, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Zhang, Z. Yao, and H. Li, “A hybrid boundary node method”, Int. J. Numer. Methods Eng., 53(4), 751–763, 2002.

    Article  MathSciNet  Google Scholar 

  35. W. Chen, “Symmetric boundary knot method”, Eng. Anal. Boundary Elements, 26(6), 489–494, 2002.

    Article  MATH  Google Scholar 

  36. G. Li and N.R. Aluru, “Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis”, Comput. Methods Appl. Mech. Eng., 191, (21-22), 2337–2370, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  37. G. Li and N.R. Aluru, “A boundary cloud method with a cloud-by-cloud polynomial basis”, Eng. Anal. Boundary Elements, 27(1), 57–71, 2003.

    Article  MATH  Google Scholar 

  38. G.E. Forsythe and W.R. Wasow, Finite Difference Methods for Partial Differential Equations, Wiley, 1960.

    Google Scholar 

  39. T.J.R. Hughes, The Finite Element Method, Prentice-Hall, 1987.

    Google Scholar 

  40. C.A. Brebbia and J. Dominguez, Boundary Elements An Introductory Course, McGraw-Hill, 1989.

    Google Scholar 

  41. K. Salkauskas and P. Lancaster, Curve and Surface Fitting, Elsevier, 1986.

    Google Scholar 

  42. X. Jin, G. Li, and N.R. Aluru, “Positivity conditions in meshless collocation methods”, Comput. Methods Appl. Mech. Eng., 193, 1171–1202, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  43. W.K. Liu, S. Li, and T. Belytschko, “Moving least-square reproducing kernel methods (I) methodology and convergence”, Comput. Methods Appl. Mech. Eng., 143, 113–154, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  44. P.S. Jensen, “Finite difference techniques for variable grids”, Comput. Struct., 2, 17–29, 1972.

    Article  Google Scholar 

  45. G.E. Fasshauer, “Solving differential equations with radial basis functions: multilevel methods and smoothing”, Adv. Comput. Math, 11, 139–159, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Zerroukat, H. Power, and C.S. Chen, “A numerical method for heat transfer problems using collocation and radial basis functions”, Int. J. Numer. Methods Eng., 42, 1263–1278, 1998.

    Article  MATH  Google Scholar 

  47. M.T. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill, 1997.

    Google Scholar 

  48. Y.Y. Lu, T. Belytschko, and L. Gu, “A new implementation of the element free galerkin method”, Comput. Methods Appl. Meek Eng., 113, 397–414, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Li, G.H. Paulino, and N.R. Aluru, “Coupling of the meshfree finite cloud method with the boundary element method: a collocation approach”, Comput. Meth. Appl. Mech. Eng., 192(20–21), 2355–2375, 2003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Li, G., Jin, X., Alum, N.R. (2005). Meshless Methods for Numerical Solution of Partial Differential Equations. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_128

Download citation

Publish with us

Policies and ethics