Skip to main content

The Role of Hormones during Seed Development and Germination

  • Chapter
Plant Hormones

Abstract

Seed production1 is an extraordinary adaptation to a terrestrial environment that permits plants to reproduce under dry conditions and broadly disperse their progeny, which can then survive in an arrested state until environmental conditions favor growth of the next generation. Although there are many anecdotal reports of extreme longevity (6), the current record for documented viability is over 1000 years for an Indian Lotus seed, collected from an ancient lake bed in China (51). To accomplish this remarkable feat, seeds contain an embryo and a supply of nutrient reserves, packaged as a dry desiccation-tolerant unit. The features that make seeds an effective means of reproduction (high nutrient content and extended viability during developmental arrest) also make them a convenient food supply, and led to the development of civilizations in cultures that made use of this dependable source of crops to supply themselves with food. Consequently, features such as nutrient content, yield, and germination control are of major agronomic importance and have been the focus of much research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965-3974

    CAS  PubMed  Google Scholar 

  2. Ara H, Jaiswal U, Jaiswal V (2000) Synthetic seed: Prospects and limitations. Current Sci 78: 1438-1444

    Google Scholar 

  3. Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The Homologous ABI5 and EEL Transcription Factors Function Antagonistically to Fine-Tune Gene Expression during Late Embryogenesis. Plant Cell 14: 1391-1403

    Article  CAS  PubMed  Google Scholar 

  4. Berger F (2003) Endosperm: the crossroads of seed development. Curr Opin Plant Biol 6: 42-50

    Article  CAS  PubMed  Google Scholar 

  5. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066

    Article  CAS  PubMed  Google Scholar 

  6. Bewley JD, Black M (1994) Seeds: Physiology of Development and Germination, 2nd. Plenum Press, New York, 367

    Google Scholar 

  7. Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy N, Ferreira P, Weisbeek P, Scheres B (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev. 16: 2566-2575

    Article  CAS  PubMed  Google Scholar 

  8. Brady S, Sarkar S, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34: 67-75

    Article  CAS  PubMed  Google Scholar 

  9. Brocard I, Lynch T, Finkelstein R (2002) Regulation and role of the Arabidopsis ABAinsensitive (ABI)5 gene in ABA, sugar and stress response. Plant Physiol. 129: 1533-1543

    Article  CAS  PubMed  Google Scholar 

  10. Brocard-Gifford I, Lynch T, Finkelstein R (2003) Regulatory networks in seeds integrating developmental, ABA, sugar and light signaling. Plant Physiol. 131: 78-92

    Article  CAS  PubMed  Google Scholar 

  11. Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Molecular Biology 37: 425-435

    Article  CAS  PubMed  Google Scholar 

  12. Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: Role of ABI5. Plant J. 30: 373-383

    Article  CAS  PubMed  Google Scholar 

  13. Chen J-G, Ullah H, Young J, Sussman M, Jones A (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 15: 902-911

    Article  CAS  PubMed  Google Scholar 

  14. Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels M (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc. Natl. Acad. Sci. USA 99: 4736-4741

    Article  CAS  PubMed  Google Scholar 

  15. Dodeman V, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48: 1493-1509

    CAS  Google Scholar 

  16. Dure LI (1997) Lea Proteins and the Desiccation Tolerance of Seeds. In B. A. Larkins and I. K. Vasil, eds, Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  17. Fedoroff N (2002) RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 5: 452-459

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez D (1997) Developmental basis of homeosis in precociously germinating Brassica napus embryos: phase change at the shoot apex. Development 124: 1149-1157

    CAS  PubMed  Google Scholar 

  19. Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-S45

    CAS  PubMed  Google Scholar 

  20. Finkelstein R, Gibson SI (2002) ABA and sugar interactions regulating development: "cross-talk" or "voices in a crowd"? Curr. Opin. Plant Biol. 5

    Google Scholar 

  21. Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 129: 1308-1319

    Article  CAS  PubMed  Google Scholar 

  22. Foley ME (2001) Seed dormancy: An update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Science 49: 305-317

    Article  CAS  Google Scholar 

  23. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848

    Article  CAS  PubMed  Google Scholar 

  24. Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4: 387-391

    CAS  Google Scholar 

  25. Goldberg R, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266: 605-614

    Article  CAS  PubMed  Google Scholar 

  26. Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2002) Mutations in the Dof Zinc Finger Genes DAG2 and DAG1 Influence with Opposite Effects the Germination of Arabidopsis Seeds. Plant Cell 14: 1253-1263

    Article  CAS  PubMed  Google Scholar 

  27. Harada J (1997) Seed maturation and control of germination. In B. A. Larkins and I. K. Vasil, eds, Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  28. Harada J (1999) Signaling in plant embryogenesis. Curr Opin Plant Biol 2: 23-27

    Article  CAS  PubMed  Google Scholar 

  29. Harada J (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158: 405-409

    Article  CAS  Google Scholar 

  30. Helliwell C, Chin-Atkins A, Wilson I, Chapple R, Dennis E, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13: 2115-2125

    Article  CAS  PubMed  Google Scholar 

  31. Hellmann H, Lawrence Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J. 22: 3314-3325

    Article  CAS  PubMed  Google Scholar 

  32. Jones A (2002) G-protein-coupled signaling in Arabidopsis. Curr Opin Plant Biol 5: 402-407

    Article  CAS  PubMed  Google Scholar 

  33. Kang J-y, Choi H-i, Im M-y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357

    Article  CAS  PubMed  Google Scholar 

  34. Kim S, Ma J, Perret P, Li Z, Thomas T (2002) Arabidopsis ABI5 subfamily members have distinct DNA binding and transcriptional activities. Plant Physiol. 130: 688-697

    Article  CAS  PubMed  Google Scholar 

  35. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Current Opinion in Plant Biology 5: 33-36

    Article  CAS  PubMed  Google Scholar 

  36. Lapik Y, Kaufman L (2003) The Arabidopsis Cupin Domain Protein AtPirin1 Interacts with the G Protein -Subunit GPA1 and Regulates Seed Germination and Early Seedling Development. Plant Cell 15: 1578-1590

    Article  CAS  PubMed  Google Scholar 

  37. Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci. 8: 110-116

    Article  CAS  PubMed  Google Scholar 

  38. Li G, Hall T, Holmes-Davis R (2002) Plant chromatin: developmental and gene control. BioEssays 24: 234-243

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32: 317-328

    Article  CAS  PubMed  Google Scholar 

  40. McCarty D (1995) Genetic Control and Integration of Maturation and Germination Pathways in Seed Development. Ann. Rev. Plant Phys. Plant Mol. Biol. 46: 71-93

    Article  CAS  Google Scholar 

  41. McGinnis K, Thomas S, Soule J, Strader L, Zale J, Sun T-p, Steber C (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15: 1120-1130

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination. Plant Cell 15: 1591-1604

    Article  CAS  PubMed  Google Scholar 

  43. Peng J, Harberd N (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5: 376-381

    Article  CAS  PubMed  Google Scholar 

  44. Rider SJ, Henderson J, Jerome R, Edenberg H, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J. 35: 33-43

    Article  CAS  Google Scholar 

  45. Riechmann J, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R, Creelman R, Pilgrim M, Broun P, Zhang J, Ghandehari D, Sherman B, Yu G-L (2000) Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110

    Article  CAS  PubMed  Google Scholar 

  46. Rock C (2000) Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357-396

    Article  CAS  Google Scholar 

  47. Rock C, Quatrano R (1995) The role of hormones during seed development. In P. J. Davies, eds, Plant hormones: Physiology, biochemistry and molecular biology, 2nd. Kluwer Academic Publishers, Norwell, Massachusetts, USA, 671-697

    Google Scholar 

  48. Ruuska S, Girke T, Benning C, Ohlrogge J (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14: 1191-1206

    Article  CAS  PubMed  Google Scholar 

  49. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299: 1896-1898

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz B, Vernon D, Meinke DW (1997) Development of the Suspensor: Differentiation, Communication, and Programmed Cell Death During Plant Embryogenesis. In B. A. Larkins and I. K. Vasil, eds, Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  51. Shen-Miller J, Mudgett M, Schopf J, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: Ancient Sacred Lotus from China. Am. J. Bot. 82: 1367-1380

    Article  Google Scholar 

  52. Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD (2003) The Pleiotropic Role of the 26S Proteasome Subunit RPN10 in Arabidopsis Growth and Development Supports a Substrate-Specific Function in Abscisic Acid Signaling. Plant Cell 15: 965–980

    Article  CAS  PubMed  Google Scholar 

  53. Souter M, Lindsey K (2000) Polarity and signalling in plant embryogenesis. J Exp Bot 51: 971-983

    Article  CAS  PubMed  Google Scholar 

  54. Swire-Clark GA, Marcotte WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol. 39: 117-128

    Article  CAS  PubMed  Google Scholar 

  55. Thomas T (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401-1410

    Article  CAS  PubMed  Google Scholar 

  56. Vogler H, Kuhlemeier C (2003) Simple hormones but complex signalling. Curr Opin Plant Biol 6: 51-56

    Article  CAS  PubMed  Google Scholar 

  57. Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42: 1017-1023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth R. Finkelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Finkelstein, R.R. (2010). The Role of Hormones during Seed Development and Germination. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_24

Download citation

Publish with us

Policies and ethics