Skip to main content

Summary

Mitochondrial mutations are widespread in the plant kingdom. They are easily detected when they result in maternal-defective or male-sterile plants. Neutral mutations that do not result in visible phenotypes also occur and are likely to be reservoirs for mitochondrial genome evolution. Because plant mitochondrial genes usually exhibit a slow rate of nucleotide Substitution, most of the reported mitochondrial mutations are rearrangements and/or deletions. Nuclear genes influence the generation and recovery of mitochondrial mutations because they control the Organization of mitochondrial genomes, as well as the expression of mitochondrial genes. The most extensively studied plant mitochondrial mutations are rearrangements resulting in chimeric genes that confer cytoplasmic male sterility (CMS), and deletions that either restore fertility to CMS plants or that cause abnormal growth. Chimeric genes, and novel arrangements of coding and regulatory sequences, can result from recombination across repeats. A model explaining the generation of abnormal growth mutants, as well as reversions of CMS-associated genomes to male fertility, is discussed. Analysis of mutants also reveals the roles of mitochondria in stress responses and mitochondrial-nuclear signaling. Plant Systems offer the advantage that mitochondrial-nuclear combinations are readily manipulated, the experimental materials are easily accessible, and generation times are usually short. Thus, they represent useful modeis for the generation and analysis of mitochondrial mutations and for the understanding of nuclear-cytoplasmic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Chm:

chloroplast mutator

CMS:

cytoplasmic male sterility

Mct:

modifier ofcox2 transcripts

MDL:

maternally-inherited distorted leaf

mtDNA:

mitochondrial DNA

NCS:

non-chromosomal stripe

NCV:

non-chromosomal variegated

NMS:

nuclear-mitochondrial sterility associated

Pcf:

petunia CMS-associated fused

PPR:

pentatricopeptide repeat

Pvs:

Phaseolus vulgaris sterility sequence

RCM:

rectifies TCM

Rf:

restorer of fertility

TCM:

teosinte-cytoplasm-associated miniature

TIRs:

terminal inverted repeats

References

  • Adams KL, Daley DO, Qiu YL, Whelan J and Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408: 354–357.

    Article  PubMed  CAS  Google Scholar 

  • Akagi H, Sakamoto M, Shinjyo C, Shimada H and Fujimura T (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25: 52–58

    Article  PubMed  CAS  Google Scholar 

  • Albert B, Godelle B, Atlan A, De Paepe R and Gouyon PH (1996) Dynamics of plant mitochondrial genome: model of a three-level selection process. Genetics 144: 369–82

    PubMed  CAS  Google Scholar 

  • Albert B, Lelandais C, Pla M, Leuret V, Vitart V, Mathieu C, Sihachakr D, Godelle B and De Paepe R (2003) Amplification of Nicotiana sylvestris mitochondrial subgenomes is under nuclear control and is associated with phenotypic exchanges. Geneticall 7: 17–25

    Article  Google Scholar 

  • Allen JO (1992) Teosinte cytoplasmic genomes: Interaction with maize nuclear genomes and molecular genetic characterization of the mitochondria. Ph.D. thesis, University of Wisconsin-Madison

    Google Scholar 

  • Allen J, Emenhiser G and Kermicle J (1989) Miniature kernel and plant: interaction between teosinte cytoplasmic genomes and maize nuclear genomes. Maydica 34: 277–290

    Google Scholar 

  • Backert S, Nielsen BL and Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2: All-4M

    Article  Google Scholar 

  • Bendich A (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24: 279–290

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Alfonso AA and Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99: 10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Bergman P, Edqvist J, Farbos I and Glimelius K (2000) Malesterile tobaeco displays abnormal mitochondrial atpl transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42: 531–544

    Article  PubMed  CAS  Google Scholar 

  • Binder S, Marchfelder A and Brennicke A (1996) Regulation of gene expression in plant mitochondria. Plant Mol Biol 32: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Boccara M, Boue C, Garmier M, De Paepe R and Boccara AC (2001) Infra-red thermography revealed a role for mitochondria in pre-symptomatic cooling during harpin-induced hypersensitive response. Plant J 28: 663–670

    Article  PubMed  CAS  Google Scholar 

  • Boeshore ML, Hanson MR and Izhar S (1985) A variant mitochondrial DNA arrangement specific to Petunia sterile somatic hybrids. Plant Mol Biol 41:25–132

    Google Scholar 

  • Bonnema AB, Castillo C, Reiter N, Cunningham M, Adams HP and O’Connell M (1995) Molecular and ultrastructural analysis of a nonchromosomal variegated mutant. Plant Physiol 109:385–392

    Article  PubMed  CAS  Google Scholar 

  • Bonnett HT, Kofer W, Hakansson G and Glimelius K (1991) Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Science 80: 119–130

    Article  CAS  Google Scholar 

  • Bonnett H, Djurber I, Fajardo M and Glimelius K (1993) A mutation causing variegation and abnormal development in tobacco is associated with an altered mitochondrial DNA. Plant J 3: 519–525

    Article  CAS  Google Scholar 

  • Brangeon J, Sabar M, Gutierres S, Combettes B, Bove J, Gendy C, Chetrit P, Des Francs-Small CC, Pla M, Vedel F and De Paepe R (2000) Defective splicing of the first nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant. Plant J 21: 269–80

    Article  PubMed  CAS  Google Scholar 

  • Brown GG and Zhang M (1995) Mitochondrial plasmids: DNA and RNA. In: CS Levings III and Vasil IK (eds) The Molecular Biology of Plant Mitochondria, Vol 3, pp 61–91. Kluwer Academic, Dordrecht

    Chapter  Google Scholar 

  • Budar F, Touzet P and De Paepe R (2003) The nucleo-mitochon-drial conflict in cytoplasmic male sterilities revisted. Genetica 117:3–16

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S and Stern DB (1999) Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11:911–926

    PubMed  CAS  Google Scholar 

  • Chase CD and Ortega VM (1992) Organization of ATPA coding and 3’ flanking sequences associated with cytoplasmic male sterility in Phaseolus vulgaris L. Curr Genet 22: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Chetrit P, Rios R, De Paepe R, Vitart V, Gutierres S and Vedel F (1992) Cytoplasmic male sterility is associated with large deletions in the mitochondrial DNA of two Nicotiana sylvestris protoclones. Curr Genet 21: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Coe E (1983) Maternally inherited abnormal plant types in maize. Maydica 28: 151–167

    Google Scholar 

  • Conley CA and Hanson MR (1995) How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomemb 27: 447–457

    Article  CAS  Google Scholar 

  • Cooper P and Newton K (1989) Maize nuclear background regulates the synthesis of a 22-kDa Polypeptide in Zea luxurians mitochondria. Proc Natl Acad Sci USA 86: 7423–7426

    Article  PubMed  CAS  Google Scholar 

  • Cooper P, Butler E and Newton KJ (1990) Identification of a maize nuclear gene which influences the size and number of coxl transcripts in mitochondria of perrenial teosintes. Genetics 126: 461–467

    PubMed  CAS  Google Scholar 

  • Cui X, Wise RP and Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272: 1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Dewey R, Levings CS III and Timothy D (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male sterile cytoplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH and Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84: 5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH and Levings CS III (1991) Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet 20: 475–482

    Article  PubMed  CAS  Google Scholar 

  • Doebley J (1990a) Molecular evidence and the evolution of maize. Econ Botany 44: 6–27

    Article  CAS  Google Scholar 

  • Doebley J (1990b) Molecular systematics of Zea (Gramineae). Maydica 35: 143–150

    Google Scholar 

  • Douce R and Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Mol Biol 40: 371–414

    Article  CAS  Google Scholar 

  • Ducos E, Touzet P and Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Duranceau M, Ghashghaie J and Brugnoli E (2001) Carbon isotope discrimination during photosynthesis and dark respira-tion in intact leaves of Nicotiana sylvestris: comparisons between wild type and mitochondrial mutant plants. Aus J Plant Physiol 28: 65–71

    CAS  Google Scholar 

  • Dutilleul C, Driscoll S, Comic G, De Paepe R, Foyer CH and Noctor G (2003 a) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic Performance in photorespiratory conditions and during transients. Plant Physiol 131: 264–275

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH and DePaepe R (2003b) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15: 1212–1226

    Article  PubMed  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in com. Adv Genet 13: 1–56

    Article  Google Scholar 

  • Edqvist J and Bergman P (2002) Nuclear identity specifies transcriptional initiation in plant mitochondria. Plant Mol Biol 49:59–68

    Article  PubMed  CAS  Google Scholar 

  • Farbos I, Mouras A, Bereterbide A and Glimelius K (2001) Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J 26: 131–42

    Article  PubMed  CAS  Google Scholar 

  • Fauron CM and Casper M (1994) A second type of normal maize mitochondrial genome: an evolutionary link. Genetics 137: 875–882

    PubMed  CAS  Google Scholar 

  • Fauron CM-R and Havlik M (1988) The BamHI/XhoI, Smal restriction maps of the normal maize mitochondrial genotype B37. Nucleic Acids Res 16: 10395–10396

    Article  CAS  Google Scholar 

  • Fauron C-R, Havlik M and Bretteil R (1990) The mitochondrial genome Organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124: 423–428

    PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y and Moore B (1995a) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11: 228–235

    Article  PubMed  CAS  Google Scholar 

  • Fauron C, Moore B and Casper M (1995b) Maize as a model of higher plant plasticity. Plant Sci 112: 11–32

    Article  CAS  Google Scholar 

  • Fauron C-R, Casper M, Gesteland R and Albertson M (1992) A multi-recombination model for the mtDNA rearrangments seen in maize cmsT regenerated plants. Plant J 2: 949–958

    Article  CAS  Google Scholar 

  • Fey J and Marechal-Drouard L (1999) Compilation and analysis of plant mitochondrial promoter sequences: An illustration of a divergent evolution between monocot and dicot mitochon­dria. Biochem Biophys Res Commun 256: 409–14

    Article  PubMed  CAS  Google Scholar 

  • Gabay-Laughnan S (2000) Restorers-of-fertility for CMS-S are present in maize and teosinte from Mexico. Maydica 45: 117–124

    Google Scholar 

  • Gabay-Laughnan S (2001) High frequency of restorers-of-fertility for CMS-EP in Zea mays L. Maydica 46: 125–122

    Google Scholar 

  • Gabay-Laughnan S, Zabala G and Laughnan JR (1995) S-type cytoplasmic male sterility in maize. In: Levings CS III and Vasil IK (eds) The Molecular Biology of Plant Mitochondria, Vol 3, pp 395–432. Kluwer Academic, Dordrecht

    Chapter  Google Scholar 

  • Garmier M, Dutilleul C, Chetrit P, Boccara M and De Paepe R (2002) Changes in antioxidant expression and harpin-induced hypersensitive response in a Nicotiana sylvestris mitochon­drial mutant. Plant Physiol Biochem 40: 561–566

    Article  CAS  Google Scholar 

  • Gerstel DU, Burns JA and Burk LG (1978) Cytoplasmic male sterility in Nicotiana, restoration of fertility and the nucleolus. Genetics 89: 157–169

    PubMed  CAS  Google Scholar 

  • Gracen V and Grogan C (1974) Diversity and suitability for hybrid production of different sources of cytoplasmic male sterility in maize. Agron J 66: 654–657

    Article  Google Scholar 

  • Gray MW, Hanic-Joyce PJ and Covello PS (1992) Transcription, processing and editing in plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 43: 145–175

    Article  CAS  Google Scholar 

  • Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y and Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26: 865–878

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Miles D and Newton KJ (1993) Analysis of leaf sectors in the NCS6 mitochondrial mutant of maize. Plant Cell 5: 963–971

    PubMed  CAS  Google Scholar 

  • Gu J, Dempsey S and Newton KJ (1994) Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J 6: 787–794

    Article  PubMed  CAS  Google Scholar 

  • Gutierres S, Lelandais C, Paepe RD, Vedel F and Chetrit P (1997a) A mitochondrial sub-stoichiometric orf87—nad3— nadl exonA co-transcription unit present in solanaceae was amplified in the genus Nicotiana. Curr Genet 31: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Gutierres S, Sabar M, Lelandais C, Chetrit P, Diolez P, Degand H, Boutry M, Vedel F, de Kouchkovsky Y and De Paepe R (1997b) Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc Natl Acad Sci USA 94: 3436–9441

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25: 461–486

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR and Folkerts O (1992) Structure and function of the higher plant mitochondrial genome. Int Rev Cytol 141: 129–172

    Article  CAS  Google Scholar 

  • Hanson MR, Nivison HT and Conley CA (1995) Cytoplasmic male sterility in Petunia. In: Levings CS III and Vasil IK (eds) The Molecular Biology of Plant Mitochondri, Vol 3, pp 497–514. Kluwer Academic, Dordrecht

    Chapter  Google Scholar 

  • Hanson MR, Wilson RK, Bentolila S, Kohler RH and Chen HC (1999) Mitochondrial gene Organization and expression in petunia male fertile and sterile plants. J Hered 90: 362–368

    Article  PubMed  CAS  Google Scholar 

  • Hartmann CH, Recipon MF, Jubier C, Valon E, Delcher-Besin Y, Henry J, De Buyser B, Lejeune A and Rode A (1994) Mitochondrial DNA variability detectable in a single wheat regenerant involves a rare recombinant event across a short repeat. Curr Genet 25: 456–464

    Article  PubMed  CAS  Google Scholar 

  • Havey M (1997) Predominant paternal transmission of the mitochondrial genome in cucumber. J Heredity 88: 232–235

    Article  Google Scholar 

  • Hedtke B, Borner T and Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277: 809–811

    Article  PubMed  CAS  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A and Mouras A (1993) Male-sterility induetion in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90: 2370–2374

    Article  PubMed  CAS  Google Scholar 

  • Horn R and Friedt W (1999) CMS sources in sunflower: different origin but same mechanism? Theor App Genet 98: 195–201

    Article  Google Scholar 

  • Howad W and Kempken F (1997) Cell type-specifie loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci USA 94: 11090–11095

    Article  PubMed  CAS  Google Scholar 

  • Howad W, Tang HV, Pring DR and Kempken F (1999) Nuclear genes from Tx CMS maintainer lines are unable to maintain atp6 RNA editing in any anther cell-type in the sorghum bicolor A3 cytoplasm. Curr Genet 36: 62–68

    CAS  Google Scholar 

  • Hunt MD and Newton KJ (1991) The NCS3 mutation: genetic evidence for the expression of ribosomal protein genes in Zea mavs mitochondria. EMBO J 10: 1045–1052

    PubMed  CAS  Google Scholar 

  • Ikeda TM and Gray MW (1999) Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi M, Kyozuka J and Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12: 1437–1446

    CAS  Google Scholar 

  • Janska H and Mackenzie SA (1993) Unusual mitochondrial genome Organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility. Genetics 135: 869–879

    PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M and Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10: 1163–1180

    PubMed  CAS  Google Scholar 

  • Jia MH, He S, Vanhouten W and Mackenzie S (1997) Nuclear fertility restorer genes map to the same linkage group in cytoplasmic male-sterile bean. Theor Appl Gen 95: 205–210

    Article  CAS  Google Scholar 

  • Johns C, Lu M, Lyznik A and Mackenzie S (1992) A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell 4: 435–49

    PubMed  CAS  Google Scholar 

  • Karpova O and Newton K (1999) A partially assembled complex I in NAD4-deflcient mitochondria of maize. Plant J 17: 511–521

    Article  CAS  Google Scholar 

  • Karpova OV, Kuzmin EV, Elthon TE and Newton KJ (2002) Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14: 3271–84

    Article  PubMed  CAS  Google Scholar 

  • Kaul MLH (1988) Male Sterility in Higher Plants. Monographs on Theoretical and Applied Genetics, Vol 10, pp 356–382. Springer-Verlag, New York

    Google Scholar 

  • Kempken F and Pring D (1999) Male sterility in higher plants: fundamentals and applications. In: Esser K (ed) Progress in Botany, Vol 60, pp 139–166. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Kitagawa J, Gerrath J, Posluszny U and Wolyn D (1994) Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sex Plant Reprod 7:41–50

    Google Scholar 

  • Köhler RH, Hörn R, Lossl A and Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227: 369–376

    Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 46: 45–70

    Article  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A and Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • L’Homme Y and Brown GG (1993) Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 21: 1903–1909

    Article  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A and Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Laser B, Oettler G and Kuck U (1995) RNA editing of the mitochondrial atpA/atp9 co-transcript of triticale, carrying the timopheevi cytoplasmic male sterility cytoplasm from wheat. Plant Physiol 107: 663–640

    Article  PubMed  CAS  Google Scholar 

  • Lauer M, Knudsen C, Newton KJ, Gabay-Laughnan SJ and Laughnan JR (1990) A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol 2: 179–186

    PubMed  CAS  Google Scholar 

  • Laughnan J and Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Ann Rev Genet 17: 27–48

    Article  PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay Laughnan S and Carlson J (1981) Characteristics of cms-S reversion to male fertility in maize. In: Stadler Genetic Symposium, Vol 13, pp 93–114

    Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F and Leaver CJ (1991) Mitochondrial genome Organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1: 185–193

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Lee H, Xiong L and Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14: 1235–1251

    Article  PubMed  CAS  Google Scholar 

  • Lelandais C, Albert B, Gutierres S, De Paepe R, Godelle B, Vedel F and Chetrit P (1998) Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant. Genetics 150: 873–882

    PubMed  CAS  Google Scholar 

  • Levings CS III (1993) Thoughts on cytoplasmic male sterility in cms-Tmaize. Plant Cell 5: 1285–1290

    PubMed  Google Scholar 

  • Levings CS III, Sederoff R, Hu W and Timothy D (1983) Relationship among the plasmid-like DNAs of the maize mitochondria. In: Ciferri O and Dure L (eds) Structure and Function of Plant Genomes, pp 363–371. Plenum Publishing Corp., New York

    Chapter  Google Scholar 

  • Li XQ, Jean M, Landry BS and Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a Single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95: 10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Li XQ, Chetrit P, Vedel F, De Paepe R and Ambard-Bretteville F (1988) Regeneration of male sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr Genet 13: 261–266

    Article  CAS  Google Scholar 

  • Lilly JW and Havey MJ (2001) Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159: 317–328

    PubMed  CAS  Google Scholar 

  • Lilly JW, Bartoszewski G, Malepszy S and Havey MJ (2001) A major deletion in the cueumber mitochondrial genome sorts with the MSC phenotype. Curr Genet 40: 144–151

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cui X, Homer HT, Weiner H and Schnable PS (2001) Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13: 1063–1078

    PubMed  CAS  Google Scholar 

  • Lonsdale D, Hodge T and Fauron C-R (1984) The physical map and Organization of the mitochondrial genome from fertile cytoplasm of maize. Nucleic Acids Res 12: 5141–5156

    Google Scholar 

  • Mackenzie S (1991) Identification of a sterility-inducing cytoplasm in a fertile accession line of Phaseolus vulgaris L. Genetics 127:411–416

    PubMed  CAS  Google Scholar 

  • Mackenzie SA and Bassett MJ (1987) Genetics of fertility restoration in cytoplasmic male sterile Phaseolus vulgaris L. 1. Cytoplasmic alteration by a nuclear restorer gene. Theor Appl Gen 74: 642–645

    Article  Google Scholar 

  • Maier RM, Zeitz P, Kossel H, Bonnard G, Gualberto JM and Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32: 343–365

    Article  PubMed  CAS  Google Scholar 

  • Makaroff C (1995) Cytoplasmic male sterility in Brassica. In: Levings CS III and Vasil IK (eds) The Molecular Biology of Plant Mitochondria, Vol 3, pp 515–555. Kluwer Academic Publisher, Dordrecht

    Chapter  Google Scholar 

  • Malepszy S, Burza W and Smiech M (1996) Characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J Appl Genet 37: 65–78

    Google Scholar 

  • Marechal-Drouard L, Weil JH and Dietrich A. (1993) Transfer RNAs and transfer RNA genes in plants. Ann Rev Plant Physiol Plant Mol Biol 44: 13–32

    Article  CAS  Google Scholar 

  • Marienfeld JR and Newton KJ (1994) The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced Complex I function. Genetics 138: 855–863

    PubMed  CAS  Google Scholar 

  • Marienfeld J, Unseld M and Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4: 495–502

    Article  PubMed  Google Scholar 

  • Martinez-Zapater JM, Gil P, Capel J and Somerville CR (1992) Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell 4: 889–899

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y and McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen produetion in plant cells. Proc Natl Acad Sci USA 96: 8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RM, Leon P and Walbot V (1991) Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol 11: 533–543

    PubMed  CAS  Google Scholar 

  • Newton KJ (1995) Aberrant growth phenotypes associated with mitochondrial genome rearrangements in higher plants. In: Levings CS III and Vasil IK (eds) The Molecular Biology of Plant Mitochondria, Vol 3, pp 585–596. Kluwer Academic Publisher, Dordrecht

    Chapter  Google Scholar 

  • Newton K and Coe EJ (1986) Mitochondrial DNA changes in abnormal growth mutants of maize. Proc Natl Acad Sci USA 83: 7363–7366

    Article  PubMed  CAS  Google Scholar 

  • Newton KJ and Courtney KM (1991) Molecular analysis of mitochondria from teosinte-cytoplasm-associated minature. Maydica 36: 153–159

    Google Scholar 

  • Newton KJ and Gabay Laughnan S (1998) Abnormal growth and male sterility associated with mitochondrial DNA rearrangements in plants. In: Singh KK (ed) Mitochondrial DNA Mutations in Aging, Disease and Cancer, pp 365–381. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Newton KJ, Coe EH, Gabay-Laughnan S and Laughnan JR (1989) Abnormal growth phenotypes and mitochondrial mutants in maize. Maydica 34: 291–296

    Google Scholar 

  • Newton KJ, Knudsen C, Gabay-Laughnan S and Laughnan JR (1990) An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell 2: 107–113

    PubMed  CAS  Google Scholar 

  • Newton KJ, Winberg B, Yamato K, Lupoid S and Stern D (1995) Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J 14: 585–593

    PubMed  CAS  Google Scholar 

  • Newton KJ, Mariano JM, Gibson CM, Kuzmin E and Gabay-Laughnan S (1996) Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria. Dev Genet 19: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Nivison HT, Sutton CA, Wilson RK and Hanson MR (1994) Sequencing, processing, and localization of the petunia CMS-associated mitochondrial protein. Plant J 5: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A and Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genom 268: 434–445

    Article  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T et al. (1992) Gene Organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primi­tive form of plant mitochondrial genome. J Mol Biol 223: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Oro A, Newton KJ and Walbot V (1985) Molecular analysis of the inheritance and stability of the mitochondrial genome of an inbred line of maize. Theor Appl Genet 70: 287–293

    Article  CAS  Google Scholar 

  • Padmasree K, Padmavathi L and Raghavendra AS (2002) Essentiality of mitochondrial oxidative metabolism for photo-synthesis: optimization of carbon assimilation and protection against photoinhibition. Crit Rev Biochem Mol Biol 37:71–119

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD and Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440

    Article  CAS  Google Scholar 

  • Palmer JD and Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL and Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97: 6960–6966

    Article  PubMed  CAS  Google Scholar 

  • Pla M, Mathieu C, De Paepe R, Cherit P and Vedel F (1995) Deletion of the last two exons of the mitochondrial nadl gene results in lack of the NAD7 Polypeptide in a Nicotiana sylvestris CMS mutant. Mol Gen Genet 248: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS III, Hu WWL and Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74: 2904–2908

    Article  PubMed  CAS  Google Scholar 

  • Rapp WD and Stern DB (1992) A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atpgene. EMBO J 11: 1065–1073

    PubMed  CAS  Google Scholar 

  • Rasmusson AG, Heiser VV, Zabaleta E, Brennicke A and Grohmann L (1998) Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochim Biophys Acta 1364: 101–111

    Article  CAS  Google Scholar 

  • Roussell DL, Thompson DL, Pallardy SG, Miles D and Newton KJ (1991) Chloroplast structure and function is altered in the NCS2 maize mitochondrial mutant. Plant Physiol 96: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Sabar M, De Paepe R and de Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124: 1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Sabar M, de Kouchkovsky Y, Gutierres S, Vedel F and De Paepe R(1998) Mitochondrial complex I dysfunction: compatibility with survival and reproduction in cytoplasmic and nuclear male-sterile mutants of Nicotiana sylvestris. In: Moller IM, Gardestrom P, Glimelius K and Glaser E (eds) Proceedings of the 5th International Congress of Plant Mitochondria: From Gene to Function, pp 87–90. Backhuys Publisher, Leiden

    Google Scholar 

  • Sakamoto W, Kondo H, Murata M and Motoyoshi F (1996) Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8: 1377–1390

    PubMed  CAS  Google Scholar 

  • Saumitou-Laprade P, Cuguen J and Vernet P (1994) Cytoplasmic male sterility in plants: Molecular evidence and the nucleocytoplasmic conflict. Trends Ecol Evol 9: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Pring DR and Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-stcrile maize. Cell 43: 361–368

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS and Wise RP (1994) Recovery of heritable, transposon-induced, mutant alleles of the rf 2 nuclear restorer ofT-cytoplasm maize. Genetics 136: 1171–1185

    PubMed  CAS  Google Scholar 

  • Schnable PS and Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3: 175–180

    Article  Google Scholar 

  • Senda M, Harada T, Mikami T, Sugiura M and Kinoshita T (1991) Genomic Organization and sequence analysis of the cytochrome oxidase subunit II gene from normal and malesterile mitochondria in sugar beet. Curr Genet 19: 175–181

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar P and Narayanan K (1999) Analysis of rice mitochondrial genome Organization using pulsed-field gel electrophoresis. J Biosci 24: 215–222

    Article  CAS  Google Scholar 

  • Singh M, Hamel N, Menassa R, Li XQ, Young B, Jean M, Landry BS and Brown GG (1996) Nuclear genes associated with a Single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics 143: 505–516

    PubMed  CAS  Google Scholar 

  • Small ID and Peeters N (2000) The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25: 46–47

    Article  PubMed  CAS  Google Scholar 

  • Small I, Isaac P and Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the mitochondrial genome diversity in maize. EMBO J 6: 865–869

    PubMed  CAS  Google Scholar 

  • Small I, Suffolk R and Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Spassova M, Moneger F, Leaver CJ, Petrov P, Atanassov A, Nijkamp H and Hille J (1994) Characterisation and expression of the mitochondrial genome of a new type of cytoplasmic male-sterile sunflower. Plant Mol Biol 26: 1819–1831

    Article  PubMed  CAS  Google Scholar 

  • Stern DB and Newton KJ (1985) Mitochondrial gene expression in Cucurbitaceae: conserved and variable features. Curr Genet 9: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Tang HV, Pring DR, Muza FR and Yan B (1996) Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm. Curr Genet 29: 265–274

    Article  PubMed  Google Scholar 

  • Tsunewaki K (1992) Nuclear genome and polyploidy in wheat. Tanpakushitsu Kakusan Koso 37: 1003–1013

    PubMed  CAS  Google Scholar 

  • Umbeck P and Gengenbach B (1983) Reversion of male-sterile T cytoplasm maize to male fertility in tissue culture. Crop Sci 23:584–588

    Article  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P and Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15: 57–61

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC and Mclntosh L (1994) Mitochondrial electron transport regulation of nuclear gene expression. Studies with the alternative oxidase gene of tobacco. Plant Physiol 105:867–874

    Article  PubMed  CAS  Google Scholar 

  • Vedel F, Vitart V, Pla M, Gutierres S, Chetrit P and De Paepe R (1994) Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiol Biochem 32: 601–618

    CAS  Google Scholar 

  • Vitart V, De Paepe R, Mathieu C, Chetrit P and Vedel F (1992) Amplification of substoiehiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol Gen Genet 233: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Ward CG (1995) The Texas male-sterile cytoplasm of maize. In: Levings CS III and Vasil IK (eds) The Molecular Biology of Plant Mitochondria, Vol 3, pp 433–459. Kluwer Academic, Dordrecht

    Chapter  Google Scholar 

  • Ward BL, Anderson RS and Bendich AJ (1981) The mitochon­drial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803

    Article  PubMed  CAS  Google Scholar 

  • Weissinger A, Timothy D, Levings CI, Hu W and Goodman M (1982) Unique plasmid-like mitochondrial DNAs from indigenous maize races of Latin America. Proc Natl Acad Sci USA 79: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Wen L and Chase CD (1999) Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet 35: 521–526

    Article  PubMed  CAS  Google Scholar 

  • Wise RP and Pring DR (2002) Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: Light at the end of the tunnel? Proc Natl Acad Sci USA 99: 10240–10242

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE, Pring DR and Gengenbach BG (1987a) Urf-13-T of T cytoplasm maize mitochondria encodes a 13 kDa Polypeptide. Plant Mol Biol 9: 121–126

    Article  CAS  Google Scholar 

  • Wise RP, Pring DR and Gengenbach BG (1987b) Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84: 2858–2862 Wise RP, Gobelman-Werner K, Pei D, Dill CL and Schnable PS (1999) Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. J Hered 90: 380–385

    Article  Google Scholar 

  • Yamato K and Newton K (1999) Heteroplasmy and homoplasmy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. J Hered 90: 369–373

    Article  Google Scholar 

  • Yamato K, Ogura Y, Kanegae T, Yamada Y and Ohyama K (1992) Mitochondrial genome strueture of rice Suspension culture from cytoplasmic male sterile line (A-58CMS): reappraisal of the master circle. Ther Appl Genet 83: 279–288

    Google Scholar 

  • Young EG and Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Zabala G, Gabay-Laughnan S and Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147: 847–860

    PubMed  CAS  Google Scholar 

  • Zabaleta E, Mouras A, Hernould M, Suharsono and Araya A (1996) Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proc Natl Acad Sci USA 93: 11259–11263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newton, K.J., Gabay-Laughnan, S., De Paepe, R. (2004). Mitochondrial Mutations in Plants. In: Day, D.A., Millar, A.H., Whelan, J. (eds) Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2400-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2400-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6651-0

  • Online ISBN: 978-1-4020-2400-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics