Skip to main content

Role of Matrix Metalloproteinases in Bone Metastasis from Human Breast and Prostate Cancer

  • Chapter
Bone Metastasis and Molecular Mechanisms

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 6))

  • 155 Accesses

Abstract

Bone metastases are a significant problem in patients with cancer of the breast and prostate. Bone metastases are associated with extensive morbidity and mortality. They cause clinical disease due to extensive, intractable bone pain, pathological fractures, and spinal cord compression and leads eventually to death. 70% of patients that die of breast cancer have noticeable disease in their bones (1, 2). Similar numbers are found for prostate cancer patients (2). Bone disease is also a major problem in multiple myeloma patients. The manifestation of the bone involvement is distinct for the three types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma: Analysis of 1000 autopsied cases. Cancer, 3: 74–85, 1950.

    PubMed  CAS  Google Scholar 

  2. Tofe AJ, Francis MD, Harvey WJ. Correlation of neoplasms with incidence and localization of skeletal metastases: An analysis of 1355 diphosphate bone scans. J Nucl Med, 16: 986–989, 1975.

    PubMed  CAS  Google Scholar 

  3. Kanis JA. Bone and cancer: Pathophysiology and treatment of metastases. Bone, 17: 101S - 105S, 1995.

    Google Scholar 

  4. Hortobagyi GN. Bone metastases in breast cancer patients. Semin Onco, 18: 11–15, 1991.

    CAS  Google Scholar 

  5. Moro L, Gazzarrini C, Crivellari D, Galligioni E, Talamini R, de Bernard B. Biochemical markers for detecting bone metastases in patients with breast cancer. Clin Chem, 39: 131–134, 1993.

    PubMed  CAS  Google Scholar 

  6. Mundy GR, Roodman GD, Bonewald LF, Orefo RO, Boyce BF. Assays for bone resorption and bone formation. Methods Enzymol, 198: 502–510, 1991.

    PubMed  CAS  Google Scholar 

  7. Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM., Meunier PJ. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma with special reference to osteomalacia. Cancer, 51: 918–924, 1983.

    PubMed  CAS  Google Scholar 

  8. Urwin GH, Percival RC, Beneton MNC, Williams JL, Kanis JA. Generalised increase in bone resorption in carcinoma of the prostate. Br J Urol, 57: 721–723, 1985.

    PubMed  CAS  Google Scholar 

  9. Maeda H, Koizumi M, Yoshimura K, Yamauchi T, Kawai T, Ogata E. Correlation between bone metabolic markers and bone scan in prostatic cancer. J Urol, 157: 539–543, 1997.

    PubMed  CAS  Google Scholar 

  10. Anderson, KC, Lust JA. Role of cytokines in multiple myeloma. Semin Hematol, 36: 14–20, 1999.

    PubMed  CAS  Google Scholar 

  11. Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int J Cancer, 99: 157–166, 2002.

    PubMed  CAS  Google Scholar 

  12. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2: 161–174, 2002.

    PubMed  CAS  Google Scholar 

  13. Shingleton WD, Hodges DJ, Brick P, Cawston TE. Collagenase: A key enzyme in collagen turnover. Biochem. Cell Biol, 74: 759–775, 1996.

    PubMed  CAS  Google Scholar 

  14. Powell WC, Matrisian LM. Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol, 213: 1–21, 1996.

    PubMed  CAS  Google Scholar 

  15. Seiki M. Membrane type-matrix metalloproteinase and tumor invasion. Curr Top Microbiol Immunol, 213: 23–32, 1996.

    PubMed  CAS  Google Scholar 

  16. Sato M, Grassner W, Endo N, Atkins R, Simmons H, Thompson DD, Golub E, Rodan G. A. Bisphosphonate action: Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest, 88: 2095–2105, 1991.

    PubMed  CAS  Google Scholar 

  17. Sato H, Seiki M. Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem, 119: 209–215, 1996.

    PubMed  CAS  Google Scholar 

  18. Will H, Hinzmann B. cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur J Biochem, 231: 602–608, 1995.

    PubMed  CAS  Google Scholar 

  19. Puente XS, Pendas AM, Llano E, Velasco G, López-Otín C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res, 56: 944–949, 1996.

    PubMed  CAS  Google Scholar 

  20. Llano E, Pendas AM, Freije JP, Nakano A, Knauper V, Murphy G, López-Otín C. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res, 59: 2570–2576, 1999.

    PubMed  CAS  Google Scholar 

  21. Gururajan R, Grenet J, Lahti JM, Kidd VJ. Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics, 52: 101–106, 1998.

    PubMed  CAS  Google Scholar 

  22. Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem, 275: 33988–33997, 2000.

    PubMed  CAS  Google Scholar 

  23. Matrisian LM. Matrix metalloproteinase gene expression. Ann NY Acad Sci, 732: 42–50, 1994.

    PubMed  CAS  Google Scholar 

  24. Benbow U, Brinckerhoff CE. The AP-1 site and the MMP gene regulation: What is all the fuss about? Matrix Biol, 15: 519–526, 1997.

    PubMed  CAS  Google Scholar 

  25. Nutt JE, Lunec J. Induction of metalloproteinase (MMP1) expression by epidermal growth factor (EGF) receptor stimulation and serum deprivation in human breast tumor cells. Eur J Cancer, 32A: 2127–2135, 1996.

    Google Scholar 

  26. Overall CM, Wrana JL, Sodek J. Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor ß1 in human fibroblasts. J Biol Chem, 266: 14064–14071, 1991.

    PubMed  CAS  Google Scholar 

  27. Benbow U, Rutter JL, Lowrey CH, Brinckerhoff CE. Transcriptional repression of the human collagenase-1 (MMP-1) gene in MDA231 breast cancer cells by all-transretinoic acid requires distal regions of the promoter. Br J Cancer, 79: 221–228, 1999.

    PubMed  CAS  Google Scholar 

  28. Edwards DR, Leco KJ, Beaudry PP, Atadia PW, Veilette C, Riabowol KT. Differential effects of transforming growth factor ß1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Exp Gerontol, 31: 207–223, 1996.

    PubMed  CAS  Google Scholar 

  29. Kerr LD, Miller DB, Matrisian LM. TGF-ß1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell, 61: 267–278, 1990.

    PubMed  CAS  Google Scholar 

  30. Stetler-Stevenson WG, Krutzsch HC, Wacher MP, Margulies IMK, Liotta LA. The activation of human type IV collagenase proenzyme. J Biol Chem, 264: 1353–1356, 1989.

    PubMed  CAS  Google Scholar 

  31. Pauli BU, Knudson W. Tumor invasion: A consequence of destructive and compositional matrix alterations. Hum Pathol, 19: 628–639, 1988.

    PubMed  CAS  Google Scholar 

  32. Andreasen PA, Kjller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: A review. Int J Cancer, 72: 1–22, 1997.

    PubMed  CAS  Google Scholar 

  33. Knäuper V, López-Otín C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem, 271: 1544–1550, 1996.

    PubMed  Google Scholar 

  34. Knäuper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G. Cellular mechansims for procollagenase-13 (MMP-13) activation. J Biol Chem, 271: 17124–17131, 1996.

    PubMed  Google Scholar 

  35. Nagase N, Ogata Y, Suzuk, K, Enghild JJ, Salvesen G. Substrate specificities and activation mechanisms of matrix metalloproteinases. Biochem Soc Trans, 19: 715–718, 1991.

    PubMed  CAS  Google Scholar 

  36. Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem, 194: 721–730, 1990.

    PubMed  CAS  Google Scholar 

  37. Ward RV, Atkinson SJ, Slocombe PM, Docherty AJP, Reynolds JJ, Murphy G. Tissue inhibitor of metalloproteinase-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. Biochim Biophys Acta, 1079: 242–246, 1991.

    PubMed  CAS  Google Scholar 

  38. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature, 370: 61–65, 1994.

    PubMed  CAS  Google Scholar 

  39. Denhardts DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM. Tissue inhibitor of metalloproteinases (TIMP aka EPA): Structure, control of expression and biological functions. Pharmac Ther, 59: 329–341, 1993.

    Google Scholar 

  40. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR. Tissue inhibitor of metalloproteinase-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem, 269: 9352–9360, 1994.

    PubMed  CAS  Google Scholar 

  41. Apte SS, Olsen BR, Murphy G. The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Bio. Chem, 170: 14313–14318, 1995.

    Google Scholar 

  42. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem, 271: 30375–30380, 1996.

    PubMed  CAS  Google Scholar 

  43. Howard EW, Banda MJ. Binding sites of tissue inhibtior of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. J Biol Chem, 266: 17972–17977, 1991.

    PubMed  CAS  Google Scholar 

  44. Kinoshita T, Sato H, Okada A, Ohuch, E, Imai K, Okada Y, Seiki M. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem, 273: 16098–16103, 1998.

    PubMed  CAS  Google Scholar 

  45. Lehti K, Lohi J, Valtanen H, Keski-Oja J. Proteolytic processing of membrane-type-1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem J, 334: 345–353, 1998.

    PubMed  CAS  Google Scholar 

  46. Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S, Mignatti P. Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J, 16: 2319–2332, 1997.

    CAS  Google Scholar 

  47. Farina AR, Tacconelli A, Teti A, Gulino A, Mackay AR. Tissue inhibitor of metalloproteinase-2 protection of matrix metalloproteinase-2 from degradation by plasmin is reversed by divalent cation chelator EDTA and bisphosphate alendronate. Cancer Res, 58: 2957–2960, 1998.

    PubMed  CAS  Google Scholar 

  48. Mari BP, Anderson IC, Mari SE, Ning Y, Lutz Y, Kobzik L, Shipp MA. Stromelysin-3 is induced in tumor/stroma cocultures and inactivated via tumor-specific and basic fibroblast growth factor-dependent mechanisms. J Biol Chem, 273: 618–626, 1998.

    PubMed  CAS  Google Scholar 

  49. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev, 14: 163–176, 2000.

    PubMed  Google Scholar 

  50. Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Wooloey K. Processing of tumor necrosis factor-a precursor by metalloproteinases. Nature, 370: 555–557, 1994.

    PubMed  CAS  Google Scholar 

  51. Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol, 161: 3340–3346, 1998.

    PubMed  CAS  Google Scholar 

  52. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Bio, 153: 893–904, 2001.

    CAS  Google Scholar 

  53. Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene, 18: 1435–1446, 1999.

    PubMed  CAS  Google Scholar 

  54. Noë V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 114: 111–118, 2001.

    PubMed  Google Scholar 

  55. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science, 277: 225–228, 1997.

    PubMed  CAS  Google Scholar 

  56. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Basega J. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteinases-1 in breast cancer cells. Cancer Res, 59: 1196–1201, 1999.

    PubMed  CAS  Google Scholar 

  57. Hargreaves PG, Wang F, Antcliff J, Murphy G, Lawry J, Russell RGG, Croucher PI. Human myeloma cells shed the interleukin-6 receptor: Inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor. Br J Haematol, 101: 694–702, 1998.

    PubMed  CAS  Google Scholar 

  58. Smith MR, Kung H, Durum SK, Colburn NH, Sun Y. TIMP-3 induces cell death by stabilizing TNF-a receptors on the surface of human colon carcinoma cells. Cytokine, 9: 770–780, 1997.

    PubMed  CAS  Google Scholar 

  59. Rivas MJG, Arii S, Furutani M, Harada T, Mizumoto M, Nishiyama H, Fujita J, Imamura M. Expression of human macrophage metalloelastase gene in hepatocellular carcinoma: Correlation with angiostatin generation and its clinical significance. Hepatology, 28: 986–993, 1998.

    CAS  Google Scholar 

  60. Furcht LT, Skubitz APN, Fields GB. Tumor cell invasion, matrix metalloproteinases, and the dogma. Lab Invest, 70: 781–783, 1994.

    PubMed  CAS  Google Scholar 

  61. Liotta LA, Tryggvason K, Garbisa S, Hart IR, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284: 67–68, 1980.

    PubMed  CAS  Google Scholar 

  62. Nakajima M, Welch DR, Belloni PN, Nicolson GL. Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res, 47: 4869–4876, 1987.

    PubMed  CAS  Google Scholar 

  63. Turpeenniemi-Hujanen T, Thorgeirsson UP, Hart IR, Grant SS, Liotta LA. Expression of collagenase IV (basement membrane collagenase) Activity in murine tumor cell hybrids that differ in metastatic potential. J Natl Cancer Inst, 75: 99–103, 1985.

    PubMed  CAS  Google Scholar 

  64. Sreenath T, Matrisian LM, Stetler-Stevenson W, Gattoni-Celli S, Pozzatti RO. Expression of matrix metalloproteinase genes in transformed rat cell lines of high and low metastatic potential. Cancer Res, 52: 4942–4947, 1992.

    PubMed  CAS  Google Scholar 

  65. Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA, 94: 1402–1407, 1997.

    PubMed  CAS  Google Scholar 

  66. Masson R, Lefebvre O, Noe A, Fahime ME, Chenard MP, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart JM, Basset P, Rio MC. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol, 140: 1535–1541, 1998.

    Google Scholar 

  67. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone, 25: 517–523, 1999.

    PubMed  CAS  Google Scholar 

  68. Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR. Activity of type IV collagenases in benign and malignant breast disease. Br. J. Cancer, 67: 1126–1131, 1993.

    PubMed  CAS  Google Scholar 

  69. Gress TM, Müller-Pillasch F, Lerch MM, Friess H, Büchler M, Adler G. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer, 62: 407–413, 1995.

    PubMed  CAS  Google Scholar 

  70. Boag AH, Young ID. Immunohistochemical analysis of type IV collagenase expression in prostatic hyperplasia and adenocarcinoma. Mod Pathol, 6: 65–68, 1993.

    PubMed  CAS  Google Scholar 

  71. Hamdy FC, Fadlon EJ, Cottam D, Lawry J, Thurrell W, Silcocks PB, Anderson JB, Williams JL, Rees RC. Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer, 69: 177–182, 1994.

    PubMed  CAS  Google Scholar 

  72. Tamakoshi K, Kikkawa F, Nawa A, Ishikawa H, Mizuno K, Tamakoshi A, Yamagata S, Suganuma N, Tomoda Y. Characterization of extracellular matrix-degrading proteinase and its inhibitor in gynecologic cancer tissues with clinically different metastatic form. Cancer, 76: 2565–2571, 1995.

    PubMed  CAS  Google Scholar 

  73. Takemura M, Azuma C, Kimura T, Kanai T, Saji F, Tanizawa O. Type-IV collagenase and tissue inhibitor of metalloproteinase in ovarian cancer tissues. Int J Gynaecol Obstet, 46: 303–309, 1994.

    PubMed  CAS  Google Scholar 

  74. Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F. Levels of matrix metalloproteinase in bladder cancer correlate with tumor grade and invasion. Cancer Res, 53: 5365–5369, 1993.

    PubMed  CAS  Google Scholar 

  75. Davidson B, Goldberg I, Kopolovic J, Lerner-Geva L, Gotlieb WH, Weis B, Ben-Baruch G, Reich R. Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix-Clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol, 72: 380–386, 1999.

    PubMed  CAS  Google Scholar 

  76. Arii S, Mise M, Harada T, Furutani M, Ishigami SI, Niwano M, Mizumoto M, Fukumoto M, Imamura M. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology, 24: 316–322, 1996.

    PubMed  CAS  Google Scholar 

  77. Hewitt RE, Leach IH, Powe DG, Clark IM, Cawston TE, Turner DR. Distribution of collagenase and tissue inhibitor of metalloproteinases (TIMP) in colorectal tumors. Int J Cancer, 49: 666–672, 1991.

    PubMed  CAS  Google Scholar 

  78. van der Stappen JW, Hendriks T, Wobbes T. Correlation between collagenolytic activity and grade of histological differentiation in colorectal tumors. Int J Cancer, 45: 1071–1078, 1990.

    PubMed  Google Scholar 

  79. Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nature Med, 2: 461–462, 1996.

    PubMed  CAS  Google Scholar 

  80. Muller D, Breathnach R, Engelmann A, Millon R, Bronner G, Flesch H, Dumont P, Eber M, Abecassis J. Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumors. Int J Cancer, 48: 550–556, 1991.

    PubMed  CAS  Google Scholar 

  81. Nakapoulou L, Giannopoulou I, Gakiopoulou H, Liapis H, Tzonou A, Davaris PS. Matrix metalloproteinase-1 and -3 in breast cancer: Correlation with progesterone receptors and other clinicopathologic features. Hum Pathol, 30: 436–442, 1999.

    Google Scholar 

  82. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, López-Otín C. Molecular cloning and expression of collagenase-3, a novel human metalloproteinase produced by breast carcinomas. J Biol Chem, 269: 16766–16773, 1994.

    PubMed  CAS  Google Scholar 

  83. Ring P, Johansson K, Höyhtyä M, Rubin K, Lindmark G. Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer-A predictor of tumor stage. Br J Cancer, 76: 805–811, 1997.

    PubMed  CAS  Google Scholar 

  84. Johansson N, Vaalamo M, Grénman S, Hietanen S, Klemi P, Saarialho-Kere U, Kähäri VM. Collagenase-3 (MMP-13) is expressed by tumor cells in invasive squamous cell carcinomas. Am J Pathol, 154: 469–480, 1999.

    PubMed  CAS  Google Scholar 

  85. Linder C, Engel G, Auer G, Strander H, Linder S. Distribution of stromelysin-3 mRNA transcripts and microvessels in human breast carcinoma. Breast Cancer Res Treat, 42: 207–213, 1997.

    PubMed  CAS  Google Scholar 

  86. Chenard MP, O’Siorain L, Shering S, Rouyer N, Lutz Y, Wolf C, Basset P, Bellocq JP, Duffy MJ. High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int J Cancer, 69: 448–451, 1996.

    PubMed  CAS  Google Scholar 

  87. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT. Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Onco., 117: 144–150, 1991.

    CAS  Google Scholar 

  88. Campo E, Merino MJ, Tavassoli FA, Charonis AS, Stetler-Stevenson WG., Liotta LA. Evaluation of basement membrane components and the 72 kDa type IV collagenase in serous tumors of the ovary. Am J Surg Pathol, 16: 500–507, 1992.

    PubMed  CAS  Google Scholar 

  89. Autio-Harmainen H, Karttunen T, Hurskainen T, Höyhtyä M, Kauppila A, Tryggvason K. Expression of 72 kilodalton type IV collagenase (gelatinase A) in benign and malignant ovarian tumors. Lab Inves, 69: 312–321, 1993.

    CAS  Google Scholar 

  90. Stearns M, Wang M. Type IV collagenase (Mr 72,000) expression in human prostate: benign and malignant tissue. Cancer Res, 53: 878–883, 1993.

    PubMed  CAS  Google Scholar 

  91. Levy AT, Cioce V, Sobel ME, Garbisa S, Grignioni WF, Liotta LA, Stetler-Stevenson WG. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res, 51: 439–444, 1991.

    PubMed  CAS  Google Scholar 

  92. Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H, Seiki M, Okada Y. Expression and tissue localization of membrane-types 1, 2 and 3 matrix metalloproteinases in human invasive breast cancer carcinomas. Cancer Res, 57: 2055–2060, 1997.

    PubMed  CAS  Google Scholar 

  93. Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seik M, Okada Y. Enhanced production and activation of progelatinase A mediated by membrane type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res, 59: 467–473, 1999.

    PubMed  CAS  Google Scholar 

  94. Caenazzo C, Onisto M, Sartor L, Scalerta R, Giraldo A, Nitti D, Garbisa S. Augmented membrane type 1 matrix metalloproteinase (MT1-MMP):MMP-2 messenger RNA ratio in gastric carcinomas with poor prognosis. Clin Cancer Res, 4: 2179–2186, 1998.

    PubMed  CAS  Google Scholar 

  95. Nomura H, Sato H, Seiki M, Mai M, Okada Y. Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res, 55: 3263–3266, 1995.

    PubMed  CAS  Google Scholar 

  96. Mori M, Mimori K, Shiraishi T, Fujie T, Baba K, Kusumoto H, Haraguchi,M, Ueo H, Akiyoshi T. Analysis of MT1-MMP and MMP-2 expression in human gastric cancers. Int J Cancer, 74: 316–321, 1997.

    PubMed  CAS  Google Scholar 

  97. Yamamoto M, Mohanam S, Sawaya R, Fuller GN, Seiki M, Sato H, Gokaslan ZL, Liotta LA, Nicolson GL, Rao JS. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res, 56: 384–392, 1996.

    PubMed  CAS  Google Scholar 

  98. Harada T, Arii S, Mise M, Imamura T, Higashitsuji H, Furutani M, Niwano M, Ishigami SI, Fukumoto M, Seiki M, Sato H, Imamura M. Membrane-type matrix metalloprotainase-1 (MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepato, 28: 231–239, 1998.

    CAS  Google Scholar 

  99. Ogata R, Torimura T, Kin M, Ueno T, Tateishi Y, Kuromatsu R, Shimauchi Y, Sakamoto M, Tamak S, Sata M, Tanikawa K. Increased expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 with tumor dedifferentiation in hepatocellular carcinomas. Hum Pathol, 30: 443–450, 1999.

    PubMed  CAS  Google Scholar 

  100. Nuovo GJ, MacConnell PB, Simsir A, Valea F, French DL. Correlation of the in situ detection of polymerase chain reaction-amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical cancer. Cancer Res, 55: 267–275, 1995.

    PubMed  CAS  Google Scholar 

  101. Alvarez OA, Carmichael DF, DeClerck YA. Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst, 82: 589–595, 1990.

    PubMed  CAS  Google Scholar 

  102. Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16–F10 melanoma cels in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J Natl Cancer Inst, 86: 299–304, 1994.

    PubMed  CAS  Google Scholar 

  103. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res, 52: 701–708, 1992.

    PubMed  CAS  Google Scholar 

  104. Testa JE. Loss of metastatic phenotype by a human epidermoid carcinoma cell line, HEp-3, is accompanied by increased expression of tissue inhibitor of metalloproteinase2. Cancer Res, 52: 5597–5603, 1992.

    PubMed  CAS  Google Scholar 

  105. Moses MA. The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells, 15: 180–189, 1997.

    PubMed  CAS  Google Scholar 

  106. Ahonen M, Baker AH, Kähär VM. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res, 58: 2310–2315, 1998.

    PubMed  CAS  Google Scholar 

  107. Wang M, Liu YE, Greene J, Sheng S, Fuchs A, Rosen EM, Shi YE. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene, 14: 2767–2774, 1997.

    PubMed  CAS  Google Scholar 

  108. Anand-Apte B, Bao L, Smith R, Iwata K, Olsen BR, Zetter B, Apte SS. A review of tissue inhibitor of metalloproteinase-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol, 74: 853–862, 1996.

    PubMed  CAS  Google Scholar 

  109. Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, DeClerck YA, Mundy, GR. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate Ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest, 99: 2509–2517, 1997.

    PubMed  CAS  Google Scholar 

  110. Stearns M, Wang M. Immunoassays of the metalloproteinase (MMP-2) and tissue inhibitor of metalloproteinase (TIMPs 1 and 2) levels in noninvasive and metastatic PC-3 clones: Effects of taxol. Oncol Res, 6: 195–201, 1994.

    PubMed  CAS  Google Scholar 

  111. Lokeshwar BL, Selze MG, Block NL, Gunja-Smisth Z. Secretion of matrix metalloproteinases and their inhibitors (tissue inhibitor of metalloproteinases) by human prostate in explant cultures: Reduced tissue inhibitor of metalloproteinase secretion by malignant tissues. Cancer Res, 53: 4493–4498, 1993.

    PubMed  CAS  Google Scholar 

  112. Grigioni WF, D’Errico A, Fortunato C, Fiorentino M, Mancini AM, Stetler-Stevenson, WG, Sobel ME, Liotta LA, Onisto M, Garbisa S. Prognosis of gastric carcinoma revealed by interactions between tumor cells and basement membrane. Mod Pathol, 7: 220–225, 1994.

    PubMed  CAS  Google Scholar 

  113. Ko BK, Cho HR, Choi DW, Nam CW, Park CJ, Kim GY, Kim SS, Woo YJ, Huh J, Lim MY. Reduced expression of tissue inhibitor of metalloproteinase in nodal metastasis of stomach cancer. J Korean Med Sci, 13: 286–290, 1998.

    PubMed  CAS  Google Scholar 

  114. Wagner SN, Ockenfels HM, Wagner C, Soyer HP, Goos M. Differential expression of tissue inhibitor of metalloproteinases-2 by cutaneous sqaumous and basal cell carcinomas. J Invest Dermatol, 106: 321–326, 1996.

    PubMed  CAS  Google Scholar 

  115. Kikkawa F, Tamakoshi K, Nawa A, Shibata K, Yamagata S, Yamagata T, Suganuma N. Positive correlation between inhibitors of matrix metalloproteinase 1 and matrix metalloproteinases in malignant ovarian tumor tissues. Cancer Lett, 120: 109–115, 1997.

    PubMed  CAS  Google Scholar 

  116. Sh Y, Parhar RS, Zou M, Hammami MM, Akhtar M, Lum ZP, Farid NR, Al Sedairy ST, Paterson MC. Tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA is elevated in advanced stages of thyroid carcinoma. Br J Cancer, 79: 1234–1239, 1999.

    Google Scholar 

  117. Ree AH, Flørenes VA, Berg JP, Mælandsmo GM, Nesland JM, Fodstad Ø. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res, 3: 1623–1628, 1997.

    PubMed  CAS  Google Scholar 

  118. Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG. Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res, 1: 899–906, 1995.

    PubMed  CAS  Google Scholar 

  119. Lu X, Levy M, Weisnstein B, Santella RM. Immunological quantitation of levels of tissue inhibitor of metalloproteinase-1 in human colon cancer. Cancer Res, 51: 6231–6235, 1991.

    PubMed  CAS  Google Scholar 

  120. Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ros, JS. Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res, 7: 3113–3119, 2001.

    PubMed  CAS  Google Scholar 

  121. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. FEBS Lett, 298: 29–32, 1992.

    PubMed  CAS  Google Scholar 

  122. Nemeth JA, Goolsby CL. TIMP-2, a growth-stimulatory protein from SV-40- transformed human fibroblasts. Exp Cell Res, 207: 376–382, 1993.

    PubMed  CAS  Google Scholar 

  123. Guedez L, Stetler-Stevenson WG, Wolff L, Wang J, Fukushima P, Mansoor A, StetlerStevenson M. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest, 102: 2002–2010, 1998.

    Google Scholar 

  124. Li G, Fridman R, Kim HR. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res, 59: 6267–6275, 1999.

    PubMed  CAS  Google Scholar 

  125. Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, Onisto M, Santi L, Stetler-Stevenson WG, Albini A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer, 75: 246–253, 1998.

    PubMed  CAS  Google Scholar 

  126. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21: 2245–2252, 2002.

    PubMed  CAS  Google Scholar 

  127. Green J. The physicochemical structure of bone: Cellular and noncellular elements. Miner. Electrolyte Metab, 20: 7–15, 1994.

    PubMed  CAS  Google Scholar 

  128. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC. Fate of melanoma cells entering the microcirculation: Over 80% survive and extravasate. Cancer Res, 55: 2520–2523, 1995.

    PubMed  CAS  Google Scholar 

  129. Chambers TJ, Fuller K. Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J Cell Sci, 76: 155–165, 1985.

    PubMed  CAS  Google Scholar 

  130. Athanasou NA, Wells CA, Quinn J, Heryet A, McGee JO. The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: Implications for tumor osteolysis and macrophage biology. Br J Cancer, 59: 491–498, 1989.

    PubMed  CAS  Google Scholar 

  131. Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15: 161–166, 1994.

    PubMed  CAS  Google Scholar 

  132. Galasko CSB. Mechansims of bone destruction in the development of skeletal metastases. Nature, 263: 507–508, 1976.

    PubMed  CAS  Google Scholar 

  133. Quinn JMW, McGee JO, Athanasou NA. Human tumor-associated macrophages differentiate into osteoclastic bone-resorbing cells. J Pathol, 184: 31–36, 1998.

    PubMed  CAS  Google Scholar 

  134. Sanchez-Sweatman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis, 18: 297–305, 1999.

    CAS  Google Scholar 

  135. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA. Proteolytic activity of human osteoclast cathepsin K. J Biol Chem, 271: 12517–12524, 1996.

    PubMed  CAS  Google Scholar 

  136. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, LeeRykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem, 271: 12511–12516, 1996.

    PubMed  CAS  Google Scholar 

  137. Stahle-Bâckdahl M, Sandstedt B, Bruce K, Lindahl A, Jimenez MG, Vega JA, LópezOtín C. Collagenase-3 (MMP-13) is expressed during human fetal ossification and re-expressed in postnatal bone remodeling and rheumatoid arthritis. Lab Invest, 76: 717–728, 1997.

    PubMed  Google Scholar 

  138. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem, 270: 5872–5876, 1995.

    PubMed  CAS  Google Scholar 

  139. Woessner JF Jr. The family of matrix metalloproteinases. Ann NY Acad Sci, 732: 11–21, 1994.

    PubMed  CAS  Google Scholar 

  140. Meikle MC, Bord S, Hembry RM, Reynolds JJ. The synthesis of collagenase, gelatinase-A (72 kDa) and -B (95 kDa), and TIMP-1 and -2 by human osteoblasts from normal and arthritic bone. Bone, 17: 255–260, 1995.

    PubMed  CAS  Google Scholar 

  141. Bord S, Horner A, Hembry RM, Reynolds JJ, Compston JE. Production of collagenase by human osteoblasts and osteoclasts in vivo. Bone, 19: 35–40, 1996.

    PubMed  CAS  Google Scholar 

  142. Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase gelatinase B) in osteoclasts: Implications for bone resorption. Lab Invest, 72: 311–322, 1995.

    CAS  Google Scholar 

  143. Lhotak S, Elavathi LJ, Vukmirovic-Popovic S, Duivenvoorden WC, Tozer RG, Singh G. Immunolocalization of matrix metalloproteinases and their inhibitors in clinical specimens of bone metastasis from breast carcinoma. Clin Exp Metastasis, 18: 463–470, 2000.

    PubMed  CAS  Google Scholar 

  144. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature, 348: 699–704, 1990.

    PubMed  CAS  Google Scholar 

  145. Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA, 92: 2730–2734, 1995.

    PubMed  CAS  Google Scholar 

  146. Polette M, Nawrocki B, Gilles C, Sato H, Seiki M, Tournier JM, Birembaut P. MTMMP expression and localization in human lung and breast cancers. Virchows Arch, 428: 29–35, 1996.

    PubMed  CAS  Google Scholar 

  147. Poulsom R, Hanby AM, Pignatelli M, Jeffery RE, Longcroft JM, Rogers L, Stamp GWH. Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol, 46: 429–436, 1993.

    PubMed  CAS  Google Scholar 

  148. Soini Y, Hurskainen T, Höyhtyä M, Oikarinen A, Autio-Harmainen H. 72 KD and 92 KD type IV collagenase, type IV collagen, and laminin mRNAs in breast cancer: A study by in situ hybridization. J Histochem Cytochem, 42: 945–951, 1994.

    PubMed  CAS  Google Scholar 

  149. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res, 53: 2087–2091, 1993.

    PubMed  CAS  Google Scholar 

  150. Monteagudo C, Merino MJ, San-Juan J, Liotta LA, Stetler-Stevenson WG. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol, 136: 585–592, 1990.

    PubMed  CAS  Google Scholar 

  151. Visscher DW, Höyhtyä M, Ottosen SK, Liang CM, Sarkar FH, Crissman JD, Fridman R. Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. Int J Cancer, 59: 339–344, 1994.

    PubMed  CAS  Google Scholar 

  152. Basset P, Wolf C, Chambon P. Expression of the stromelysin-3 gene in fibroblastic cells of invasive carcinoma of the breast and other human tissues: A review. Breast Cancer Res Treat, 24: 185–193, 1993.

    PubMed  CAS  Google Scholar 

  153. Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Danø K. Expression of matrix metalloproteinase-9 in vascular pericytes in human breast cancer. Lab Invest, 77: 345–355, 1997.

    PubMed  CAS  Google Scholar 

  154. Montironi R, Lucarini G, Castaldini C, Galluzzi CM, Biagini G, Fabris G. Immunohistochemical evaluation of type IV collagenase (72-Kd metalloproteinase) in prostatic intraepithelial neoplasia. Anticancer Res, 16: 2057–2062, 1996.

    PubMed  CAS  Google Scholar 

  155. Varani J, Hattori Y, Dame MK, Schmidt T, Murphy HS, Johnson KJ, Wojno KJ. Matrix metalloproteinases (MMPs) in fresh human prostate tumor tissue and organ-cultured prostate tissue: levels of collagenolytic and gelatinolytic MMPs are low, variable and different in fresh tissue versus organ-cultured tissue. Br J Cancer, 84: 1076–1083, 2001.

    PubMed  CAS  Google Scholar 

  156. Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M. Metalloproteinases in multiple myeloma: Production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood, 4: 1649–1655, 1997.

    Google Scholar 

  157. Clohisy DR, Perkins SL, Ramnaraine MLR. Review of cellular mechanisms of tumor osteolysis. Clin Orthop Rel Res, 373: 104–114, 2000.

    Google Scholar 

  158. Clohisy DR, Palkert D, Ramnaraine MLR, Pekurovsky I, Oursler MJ. Human breast cancer induces osteoclast activation and increases the number of osteoclasts at sites of tumor osteolysis. J Orthop Res, 14: 396–402, 1996.

    PubMed  CAS  Google Scholar 

  159. Perkel VS, Mohan S, Herring SJ, Baylink,DJ, Linkhart TA. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells. Cancer Res, 50: 6902–6907, 1990.

    PubMed  CAS  Google Scholar 

  160. Lehr JE, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst, 90: 118–123, 1998.

    PubMed  CAS  Google Scholar 

  161. Festuccia C, Teti A, Bianco P, Guerra F, Vicentini C, Tennina R, Villanova I, Sciortino G, Bologna M. Human prostatic tumor cells in culture produce growth and differentiation factors active on osteoblasts: a new biological and clinical parameter for prostatic carcinoma. Oncol Res, 9: 419–431, 1997.

    PubMed  CAS  Google Scholar 

  162. Duivenvoorden WCM, Hirte HW, Singh G. Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis, 17: 312–322, 1997.

    PubMed  CAS  Google Scholar 

  163. Brown PD, Levy AT, Margulies IMK, Liotta LA, Stetler-Stevenson WG. Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res, 50: 6184–6191, 1990.

    PubMed  CAS  Google Scholar 

  164. Ohishi K, Fujita N, Moringa Y, Tsuruo T. H-31 human breast cancer cells stimulate type I collagenase production in osteoblast-like cells and induce bone resorption. Clin Exp Metastasis, 13: 287–295, 1995.

    PubMed  CAS  Google Scholar 

  165. Lacroix M, Siwek B, Marie PJ, Body JJ. Production and regulation of interleukin-11 by breast cancer cells. Cancer Lett, 127: 29–35, 1998.

    PubMed  CAS  Google Scholar 

  166. Utoguchi N, Mizuguchi H, Dantakean A, Makimoto H, Wakai Y, Tsututsumi Y, Nakagawa S, Mayumi T. Effect of tumor cell-conditioned medium on endothelial macromolecular permeability and its correlation with collagen. Br J Cancer, 73: 24–28, 1996.

    PubMed  CAS  Google Scholar 

  167. Polette M, Gilles C, Marchand V, Lorenzato M, Toole B, Tournier JM, Zucker S, Birembaut P. Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers. J Histochem Cytochem, 45: 703–709, 1997.

    PubMed  CAS  Google Scholar 

  168. Ellis SM, Nabeshima K, Biswas C. Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res, 49: 3385–3391, 1989.

    PubMed  CAS  Google Scholar 

  169. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shuli S, Mann K, Rodan GA. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res, 47: 4961–4966, 1987.

    PubMed  CAS  Google Scholar 

  170. DiPerso JF, Brennan JK, Lichtman MA, Speiser BL. Human cell lines that elaborate colony-stimulating activity for the marrow cells of man and other species. Blood, 51: 507–519, 1978.

    Google Scholar 

  171. Hoshi H, McKeehan WL. Brain-and liver cell-derived factors are required for growth of human endothelial cells in serum-free culture. Proc Natl Acad Sci USA, 81: 6413–6417, 1984.

    PubMed  CAS  Google Scholar 

  172. Stonelake PS, Jones CE, Neoptolemos JP, Baker PR. Proteinase inhibitors reduce basement membrane degradation by human breast cancer cell lines. B. J Cancer, 75: 951–959, 1997.

    CAS  Google Scholar 

  173. Kolkhorst V, Stürzebecher J, Wiederanders B. Inhibition of tumor cell invasion by protease inhibitors: Correlation with protease profile. J Cancer Res Clin Oncol, 124: 598–606, 1998.

    PubMed  CAS  Google Scholar 

  174. Ferry G, Boutin JA, Hennig P, Genton A, Desmet C, Fauchère JL, Atassi G, Tucker GC. A zinc chelator inhibiting gelatinases exerts potent in vitro anti-invasive effects. Eur J Pharmacol, 351: 225–233, 1998.

    PubMed  CAS  Google Scholar 

  175. Watson SA, Morris TM, Robinson G, Crimmin MJ, Brown PD, Hardcastle JD. Inhibition of organ invasion by the matrix metalloproteinase inhibitor Batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res, 55: 3629–3633, 1995.

    PubMed  CAS  Google Scholar 

  176. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM. Matrix metalloproteinase inhibitor BB-94 (Batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res, 54: 4726–4728, 1994.

    PubMed  CAS  Google Scholar 

  177. Sledge GW Jr, Qulali M, Goulet R, Bone EA, Fife R. Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst, 87: 1546–1550, 1995.

    PubMed  CAS  Google Scholar 

  178. Eccles SA, Box GM, Court WJ, Bone EA, Thomas W, Brown P. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor Batimastat (BB94). Cancer Res, 56: 2815–2822, 1996.

    PubMed  CAS  Google Scholar 

  179. Giavazzi R, Garofalo A, Ferri C, Lucchini V, Bone EA, Chiara S, Brown PD, Nicoletti MI, Taraboletti G. Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res, 4: 985–992, 1998.

    PubMed  CAS  Google Scholar 

  180. Beattie GJ, Smyth JF. Phase I study of intraperitoneal metalloproteinase inhibitor BB-94 in patients with malignant ascites. Clin Cancer Res, 4: 1899–1902, 1998.

    PubMed  CAS  Google Scholar 

  181. Macaulay VM, O’Byrne KJ, Saunders MP, Braybrooke JP, Long L, Gleeson F, Mason CS, Harris AL, Brown P, Talbot DC. Phase I study of intrapleural Batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res, 5: 513–520, 1999.

    PubMed  CAS  Google Scholar 

  182. Nemunaitis J, Poole C, Primrose J, Rosemurgy A, Melfetano J, Brown P, Berrington A, Cornish A, Lynch K, Rasmussen H, Kerr D, Cox D, Millar A. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clin Cancer Res, 4: 1101–1109, 1998.

    PubMed  CAS  Google Scholar 

  183. Tierney GM, Griffin NR, Stuart RC, Kasem H, Lynch KP, Lury JT, Brown PD, Millar AW, Steele RJC, Parsons SL. A pilot study of the safety and the effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. Eur J Cancer, 35: 563–568, 1999.

    PubMed  CAS  Google Scholar 

  184. Gradishar W, Sparano J, Cobleigh M, Kennedy MJ, Schuchter L, Wicks J, Rasmussen H. A phase I study of marimastat in combination with doxorubicin and cycloposphamide in patients with metastatic breast cancer. (Abst) Proc Am Soc Clin Oncol 17: 144a, 1998.

    Google Scholar 

  185. O’Reilly S, Mani S, Ratain MJ, Elza Brown K, Johnson S, Vogelzang NJ, Kennedy MJ, Donehower R, Rugg T. Schedules of 5FU and the matrix metalloproteinase inhibitor marimastat (MAR): A phase I study. (Abst) Proc Am Soc Clin Oncol, 17: 217a, 1998.

    Google Scholar 

  186. Adams M, Thomas H. A phase I study of the matrix metalloproteinase inhibitor, Marimastat, administered concurrently with carboplatin, to patients with relapsed ovarian cancer. (Abst) Proc Am Soc Clin Oncol, 17: 217a, 1998.

    Google Scholar 

  187. Bramhall SR, Hallissey MT, Whiting J, Scholefield J, Tierney G, Stuart, RC, Hawkins RE, McCulloch P, Maughan T, Brown PD, Baillet M, Fielding JW. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br J Cancer, 86: 1864–1870, 2002.

    PubMed  CAS  Google Scholar 

  188. Nelson NJ. Inhibitors of angiogenesis enter phase III testing. J Natl Cancer Inst, 90: 960–963, 1998.

    PubMed  CAS  Google Scholar 

  189. Bull C, Flynn C, Eberwein D, Casazza AM, Carter CA, Hibner B. Activity of the biphenyl matrix metalloproteinase inhibitor BAY 12–9566 in murine in vivo models. Proc. Am. Assoc. Cancer Res, 39: 302, 1998.

    Google Scholar 

  190. Nozaki S, Sissons S, Casazza AM, Sledge GW Jr. Inhibition of human breast cancer regrowth and pulmonary metastases by BAY 12–9566 in athymic mice. (Abst) Proc Am Assoc Cancer Res, 39: 301, 1998.

    Google Scholar 

  191. Flynn C, Bull C, Eberwein D, Matherne C, Hibner B. Anti-metastatic activity of BAY 12–9566 in a human colon carcinoma HCT116 orthotopic model. (Abst) Proc Am Assoc Cancer Res, 39: 301, 1998.

    Google Scholar 

  192. Chouinard E, Goel R, Hirte HW, Stewart D, Hurak S, Waterfield B, Matthews S, Elias I, Seymour L. A phase I interaction study between BAY 12–9566 and doxorubicin in cancer patients. (Abst) Proc Am Assoc Cancer Res, 40: 84, 1999.

    Google Scholar 

  193. Santos O, McDermott CD, Daniels RG, Appelt K. Rodent pharmacokinetic and antitumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin Exp Metastasis, 15: 499–508, 1997.

    PubMed  CAS  Google Scholar 

  194. Price A, Shi Q, Morris D, Wilcox ME, Brasher PMA, Rewcastle NB, Shalinsky D, Zou H, Appelt K, Johnston RN, Yong VW, Edwards D, Forsyth P. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res, 5: 845–854, 1999.

    PubMed  CAS  Google Scholar 

  195. Shalinsky D, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards DR, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt, K. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci, 878: 236–270, 1998.

    Google Scholar 

  196. Johnston MR, Mullen JM, Pagura M, Brekken J, Zou H, Shalinsky D. AG3340 and carboplatin increase survival in an orthotopic nude rat model of primary and metastatic human lung cancer. (Abst) Proc Am Assoc Cancer Res, 40: 293, 1999.

    Google Scholar 

  197. Shalinsky D, Brekken J, Zou H, Bender S, Zook S, Appelt K, Webber S, Varki NV. Increased apoptosis in human androgen-independent prostatic PC-3 tumors following oral administration of a novel matrix metalloproteinase (MMP) inhibitor, AG3340, in male nude mice. (Abst) Proc Am Assoc Cancer Res, 39: 646, 1998.

    Google Scholar 

  198. Zou H, Brekken J, Shalinsky D. Human tumors retain sensitivity to AG3340, a selective metalloproteinase inhibitor, after extended treatment and serial passage in vivo. (Abst) Proc Am Assoc Cancer Res, 40, 709. 1999.

    Google Scholar 

  199. Hibner B, Card A, Flynn C, Casazza AM, Taraboletti G, Rieppi M, Giavazzi R. BAY 12–9566, a novel, biphenyl matrix metalloproteinase inhibitor, demonstrates anti-invasive and anti-angiogenic properties. (Abst) Proc Am Assoc Cancer Res, 39: 302, 1998.

    Google Scholar 

  200. Shalinsky D, Zou H, McDermott CD, Brekken J, Niesman MR, Rivero ME, Garcia CR, Freeman MR, Appelt K. AG3340, a selective MMP inhibitor, has broad antiangiogenic activity across oncology and ophthalmology models in vivo. (Abst) Proc Am Assoc Cancer Res, 40: 66, 1999.

    Google Scholar 

  201. Naglich JG, Jure-Kunkel M, Gupta E, Fargnoli J, Henderson AJ, Lewin AC, Talbott R, Baxter A, Bird J, Savopoulos R, Wills R, Kramer RA, Trail PA. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res, 61: 8480–8485, 2001.

    PubMed  CAS  Google Scholar 

  202. Gordon JM, Walker, CB, Murphy JC, Goodson JM, Socransky SS. Tetracycline: Levels achievable in gingival crevice fluid and in vitro effect on subgingival organisms. Part I. Concentrations in crevical fluid after repeated doses. J Periodont, 52: 609–612, 1981.

    PubMed  CAS  Google Scholar 

  203. Sasaki T, Ramamurthy NS, Golub LM. Tetracycline administration increases collagen synthesis in osteoblasts of streptozotocin-induced diabetic rats: A quantitative autoradiographic study. Calcif Tissue Int, 50: 411–419, 1992.

    PubMed  CAS  Google Scholar 

  204. Greenwald RA, Simonson BG, Moak SA, Rush SW, Ramamurthy NS, Laskin RS, Golub LM. Inhibition of epiphyseal cartilage collagenase by tetracyclines in low phosphate rickets in rats. J Orthop Res, 6: 695–703, 1988.

    PubMed  CAS  Google Scholar 

  205. Schlondorff D, Satriano J. Interactions with calmodulin: Potential mechanism for some inhibitory actions of tetracyclines and calcium channel blockers. Biochem Pharmacol, 34: 3391–3393, 1985.

    PubMed  CAS  Google Scholar 

  206. Lauhio A, Salo T, Ding Y, Konttinen YT, Nordstrom D, Tschesche H, Lähdevirta J, Golub LM, Sorsa T. In vivo inhibition of human neutrophil collagenase (MMP-8) activity during long-term combination therapy of doxycycline and non-steriodal anti-inflammatory drugs (NSAID) in acute reactive arthritis. Clin Exp Immunol, 98: 21–28, 1994.

    Google Scholar 

  207. Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, McGeehan G, McElroy AB, Drewry D, Lambert MH. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science, 263: 375–377, 1994.

    PubMed  CAS  Google Scholar 

  208. Uitto VJ, Firth JD, Nip L, Golub LM. Doxycycline and chemically modified tetracyclines inhibit gelatinase A (MMP-2) gene expression in human skin keratinocytes. Ann NY Acad Sci 732: 140–151, 1994.

    PubMed  CAS  Google Scholar 

  209. van den Bogert C, Dontje BHJ, Holtrop M, Melis TE, Romijn JC, van Dongen JW, Kroon AM. Arrest of proliferation of renal and prostate carcinomas of human origin by inhibition of mitochondrial protein synthesis. Cancer Res, 46: 3283–3289, 1986.

    PubMed  Google Scholar 

  210. Kroon AM, Dontje BHJ, Holtrop M, van den Bogert C. The mitochondrial genetic system as a target for chemotherapy: tetracyclines as cytostatics. Cancer Lett, 25: 33–40, 1984.

    PubMed  CAS  Google Scholar 

  211. Sotomayor EA, Teicher BA, Schwartz GN, Holden SA, Menon K. Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother Pharmacol, 30: 377–384, 1992.

    PubMed  CAS  Google Scholar 

  212. Duivenvoorden WCM, Vukmirovic-Popovic S, Lhotàk S, Seidlitz E, Hirte HW, Tozer RG, Singh G. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res, 62: 1588–1591, 2002.

    PubMed  CAS  Google Scholar 

  213. Cianfrocca M, Cooley TP, Lee JY, Rudek MA, Scadden DT, Ratner L, Pluda JM, Figg WD, Krown SE, Dezube BJ. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi’s sarcoma: a phase I AIDS malignancy consortium study. J Clin. Oncol, 20: 153–159, 2002.

    PubMed  CAS  Google Scholar 

  214. Lin JT, Lane JM. Bisphosphonates. J Am Acad Orthop Surg, 11: 1–4, 2003.

    PubMed  Google Scholar 

  215. Kanis JA, McCloskey EV. Bisphosphonates in multiple myeloma. Cancer, 88: 3022–3032, 2000.

    PubMed  CAS  Google Scholar 

  216. Lipton A. Bisphosphonates and breast carcinoma. Cancer, 88: 3033–3037, 2000.

    PubMed  CAS  Google Scholar 

  217. Eaton CL, Coleman RE. Pathophysiology of bone metastases from prostate cancer and the role of bisphosphonates in treatment. Cancer Treat Rev, 29: 189–198, 2003.

    PubMed  CAS  Google Scholar 

  218. Paterson AHG, Powles TJ, McCloskey E, Hanson J, Ashley S. Double-blind controlled trial of clodronate in patients with bone metastases from breast cancer. J Clin Oncol, 11: 59–63, 1993.

    PubMed  CAS  Google Scholar 

  219. O’Rourke N, McCloskey E, Houghton F, Huss H, Kanis JA. Double-blind, placebo controlled, dose-response trial of oral clodronate in patients with bone metastases. J Clin Oncol, 13: 929–934, 1995.

    PubMed  Google Scholar 

  220. Kanis JA, Powles T, Paterson AHG, McCloskey EV, Ashley S. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone, 19: 663–667, 1996.

    PubMed  CAS  Google Scholar 

  221. Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Eng J Med, 339: 357–363, 1998.

    CAS  Google Scholar 

  222. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda, T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res, 55: 3551–3557, 1995.

    PubMed  CAS  Google Scholar 

  223. Stearns M, Wang M. Effects of alendronate and taxol on PC-3 ML cell bone metastases in SCID mice. Invasion Metastasis, 16: 116–131, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Duivenvoorden, W.C.M., Singh, G. (2004). Role of Matrix Metalloproteinases in Bone Metastasis from Human Breast and Prostate Cancer. In: Singh, G., Orr, W. (eds) Bone Metastasis and Molecular Mechanisms. Cancer Metastasis — Biology and Treatment, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2036-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2036-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6563-6

  • Online ISBN: 978-1-4020-2036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics