Skip to main content

Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory properties of mammalian central neurones in vitro

  • Chapter
Movement Disorders: Tremor

Abstract

Tremor as a sign of brain malfunction has been a topic of speculation and conjecture for over 400 years (see Capildeo, this volume, chapter 20). From a neurological point of view, the customary approach to this problem has been that of attempting to link, causally, the anatomical location and extent of central lesions to the nature of the functional abnormalities. Indeed, over the years the variances of tremor that may be seen following single or combined lesions at different sites in the CNS of man as well as of experimental animals have been described in great detail. This approach has yielded an enormous wealth of clinical information. However, the lack of a set of mechanism-related concepts serving as a common denominator for these observations has impeded the development of a truly systematic classification of tremor. Moreover, on occasion, the purely phenomenological approach has yielded conflicting views, leading to disagreement regarding both the nomenclature and the genesis of this class of motor abnormality. Thus, as underlined by Marsden (this volume, chapter 4), the categories of disagreement are many and at times quite profound, one much aired being that of the central versus peripheral nature of several of the human tremors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alajouanine, T., Thurel, R. and Hornet, T. (1937). Un cas anatomoclinique de myoclonies vĂ©lopharyngĂ©es et oculaires. Rev. Neurol., 64, 853–72.

    Google Scholar 

  • Allum, J. H. J., Dietz, V. and Freund, H. J. (1978). Neuronal mechanisms underlying physiological tremor. J. Neurophysiol., 41, 557–71.

    CAS  PubMed  Google Scholar 

  • Bennett, M. V. L. and Goodenough, D. A. (1978). Gap junctions, electrotonic coupling and intercellular communication. Neurosci. Res. Prog. Bull., 16 (3), 377–463.

    Google Scholar 

  • Brooks, V. B., Kozlovskaya, I. B., Atkin, A., Horvath, F. E. and Uno, M. (1973). Effects of cooling dentate nucleus on tracing task performance in monkeys. J. Neurophysiol., 36, 974–95.

    CAS  PubMed  Google Scholar 

  • Carrea, R. M. E. and Mettler, F. A. (1947). Physiological consequences following extensive removals of the cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J. Comp. Neurol., 87, 169–288.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, A. H., Holmes, P. J. and Rand, R. H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol., 13, 345–69.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J. A. and Stevens, C. F. (1971). Prediction of repetitive firing behavior from voltage clamp data on an isolated neuron soma. J. Physiol. (Lond.), 213, 31.

    Article  PubMed Central  CAS  Google Scholar 

  • Eccles, J. C., LlinĂ¡s, R. and Sasaki, K. (1966a). The excitatory synaptic action of climbing fibres on Purkinje cells of the cerebellum. J. Physiol. (Lond.), 182, 268–96.

    Article  CAS  Google Scholar 

  • Eccles, J. C., LlinĂ¡s, R., Sasaki, I. and Voorhoeve, P. E. (1966b). Interaction experiments on the responses evoked in Purkinje cells by climbing fibers. J. Physiol. (Lond.), 182, 297–315.

    Article  CAS  Google Scholar 

  • Eckert, R. and Lux, H. D. (1976). A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J. Physiol. (Lond.), 254, 129–51.

    Article  CAS  Google Scholar 

  • Elble, R. J. and Randall, J. E. (1976). Motor-unit activity responsible for the 8-to 12-Hz component of human physiological finger tremor. J. Neurophysiol., 39, 370–83.

    CAS  PubMed  Google Scholar 

  • Friesen, O. and Stent, G. S. (1977). Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biol. Cybern., 28, 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Getting, P. A., Lennard, P. R. and Hume, R. I. (1980). Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J. Neurophysiol., 44, 151–64.

    CAS  PubMed  Google Scholar 

  • Goldberger, M. E. and Growdon, J. H. (1971). Tremor at rest following cerebellar lesions in monkeys: effects of L-dopa administration. Brain Res., 2, 183–7.

    Article  Google Scholar 

  • Gorman, A. L. F., Hermann, A. and Thomas, M. V. (1980). The neuronal pacemaker cycle. In Koester, J. and Byrne, J. H. (eds), Molluscan Nerve Cells: From Biophysics to Behavior, Cold Spring Harbor Reports in the Neurosciences, vol. 1, Cold Spring Harbor Laboratory, pp. 169–80.

    Google Scholar 

  • Guillain, G. and Mollaret, P. (1931). Deux cas de myoclonies synchronĂ©s et rythmĂ©es vĂ©lo-pharyngolaryngo-oculo-diaphragmatiques: le probleme anatomique et physio-pathologique de ce syndrome. Rev. Neurol. (Paris), 2, 545–66.

    Google Scholar 

  • Gwyn, D. G., Nicholson, G. P. and Flumerfelt, B. A. (1977). The inferior olivary nucleus in the rat: a light and electron microscopic study. J. Comp. Neurol., 174, 489–520.

    Article  CAS  PubMed  Google Scholar 

  • Hagbarth, K. E., Wallin, G., Lofstedt, L. and Aquilonius, S. M. (1975). Muscle spindle activity in alternating tremor of Parkinsonism and in clonus. J. Neurol. Neurosurg. Psychiatr., 38, 636–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagiwara, S., Kusano, K. and Saito, N. (1961). Membrane changes of Onchidium nerve cell in potassium-rich media. J. Physiol. (Lond.), 155, 470.

    Article  CAS  Google Scholar 

  • Halliday, A. M. and Redfearn, J. W. T. (1956). An analysis of the frequency of finger tremor in healthy subjects. J. Physiol., (Lond.), 134, 600–11.

    Article  CAS  Google Scholar 

  • Hermann, C. Jr and Brown, J. W. (1967). Palatal myoclonus: a reappraisal. J. Neurol. Sci., 5, 473–92.

    Article  Google Scholar 

  • Holmes, G. (1922). The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet, 100(1), 1177–82, 1231–7; 100(2), 59–65, 111–15.

    Google Scholar 

  • Holmes, P. J. (1979). A nonlinear oscillator with a strange attractor. Phil. Trans. R. Soc. Lond. A, 292, 419–48.

    Article  Google Scholar 

  • Jung R. (1941). Physiologische untersuchungen ueber den Parkinsontremor und andere zitterformen beim menschen. Z. Ges. Neurol. Psychiatr., 173, 263–330.

    Article  Google Scholar 

  • King, J. S. (1976). The synaptic cluster (glomerulus) in the inferior olivary nucleus. J. Comp. Neurol., 165, 387–400.

    Article  CAS  PubMed  Google Scholar 

  • Koeppen, A. H., Barron, K. D. and Dentinger, M. P. (1980). In Courville, J., et al. (eds), The Inferior Olivary Nucleus: Anatomy and Physiology, Raven Press, New York, p. 309ff.

    Google Scholar 

  • Lamarre, Y. (1975). Tremorgenic mechanisms in primates. In Meldrum, B. S. and Marsden, C. D. (eds), Advances in Neurology, vol. 10, Raven Press, New York, pp. 23–34.

    Google Scholar 

  • Lamarre, Y. and Dumont, M. (1972). In Goldsmith, E. I. and Moor-Jankowski, J. (eds), Medical Primatology, Karger, Basel, pp. 274–81.

    Google Scholar 

  • Lamarre, Y., Montigny, C.de, Dumont, M. and Weiss, M. (1971). Harmalineinduced rhythmic activity of cerebellar and lower brain stem neurons. Brain Res., 32, 246–50.

    Article  CAS  PubMed  Google Scholar 

  • Lamarre, Y. and Weiss, M. (1973). Harmaline-induced rhythmic activity of alpha and gamma motoneurons in the cat. Brain Res., 63, 430–4.

    Article  CAS  PubMed  Google Scholar 

  • LlinĂ¡s, R. (1970). Neuronal operations in cerebellar transactions. In Schmitt, F. O. (ed.), The Neurosciences: Second Study Program, Rockefeller Univ. Press, New York, pp. 409–26.

    Google Scholar 

  • LlinĂ¡s, R. (1981). Microphysiology of the cerebellum. In Brooks, V. B. (ed.), Handbook of Physiology, vol. II, The Nervous System, part II, American Physiology Society, Bethesda, MD, chap. 17, pp. 831–976.

    Google Scholar 

  • LlinĂ¡s, R., Baker, R. and Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol., 37, 560–71.

    PubMed  Google Scholar 

  • LlinĂ¡s, R. and Hess, R. (1976). Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc. Natl Acad. Sci. (USA), 73, 2520–3.

    Article  Google Scholar 

  • LlinĂ¡s, R. and Jahnsen, H. (1982). Electrophysiology of mammalian thalamic neurons in vitro. Nature, 297, 406–8.

    Article  PubMed  Google Scholar 

  • LlinĂ¡s, R. and Sugimori, M. (1980a). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.), 305, 171–95.

    Article  Google Scholar 

  • LlinĂ¡s, R. and Sugimori, M. (1980b). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.), 305, 197–213.

    Article  Google Scholar 

  • LlinĂ¡s, R. and Volkind, R. A. (1973). The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp. Brain. Res., 18, 69–87.

    Article  PubMed  Google Scholar 

  • LlinĂ¡s, R., Walton, K., Hillman, D. E. and Sotelo, C. (1975). Inferior olive: its role in motor learning. Science, 190, 1230–1.

    Article  PubMed  Google Scholar 

  • LlinĂ¡s, R. and Yarom, Y. (1981a). Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. (Lond.), 315, 549–67.

    Article  Google Scholar 

  • LlinĂ¡s, R. and Yarom, Y. (1981b). Properties and distribution of ionic conductances generating electroresponsiveness of inferior olivary neurons in vitro. J. Physiol. (Lond.), 315, 569–84.

    Article  Google Scholar 

  • Marsden, C. D. (1978). The mechanisms of physiological tremor and their significance in pathological tremors. In Desmedt, J. E. (ed.), Progress in Clinical Neurophysiology, vol. 5, Physiological Tremor, Pathological Tremors and Clonus, Karger, Basel, pp. 1–16.

    Google Scholar 

  • Marshall, J. (1970). Tremor. In Vinken, P. J. and Bruyn, G. W. (eds), Handbook of Clinical Neurology, vol. 6, North-Holland, Amsterdam, pp. 809–25.

    Google Scholar 

  • Mauritz, K. H., Schmitt, C. and Dichgans, J. (1981). Delayed and enhanced long latency reflexes as the possible cause of postural tremor in late cerebellar atrophy. Brain, 104, 97–116.

    Article  CAS  PubMed  Google Scholar 

  • Meech, R. W. and Standen, N. B. (1975). Potassium activation in Helix aspersa neurons under voltage clamp: a component mediated by calcium influx. J. Physiol., 249, 211–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montigny, C.de and Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olivo-cerebellar-bulbar system of the cat. Brain Res., 53, 81–95.

    Article  PubMed  Google Scholar 

  • Montigny, C.de and Lamarre, Y. (1974). Activity in the olivo-cerebello-bulbar system of the cat during ibogaline- and oxotremorine-induced tremor. Brain Res., 82, 369–73.

    Article  PubMed  Google Scholar 

  • Neilson, P. D. and Lance, J. W. (1978). Reflex transmission characteristics during voluntary activity in normal man and patients with movement disorders. In Desmedt, J. E. (ed.), Progress in Clinical Neurophysiology, vol. 5, Physiological Tremor, Pathological Tremors and Clonus, Karger, Basel, pp. 263–99.

    Google Scholar 

  • Neu, J. C. (1980). Large populations of coupled chemical oscillators. SIAM J. Appl. Math., 38(2), 305–16.

    Article  Google Scholar 

  • Neuner, A. and Tappeiner, H. (1894). Ueber bei Wirkungen der Alkaloide von Peganum harmala, insbesonders des Harmalins. Arch. Exp. Pathol. Pharmakol., 36(I), 69.

    Article  Google Scholar 

  • Pellionisz, A. and LlinĂ¡s, R. (1980). Tensorial approach to the geometry of brain function. Cerebellar coordination via metric tensor. Neuroscience, 5, 1125–36.

    Article  CAS  PubMed  Google Scholar 

  • Rutherford, J. G. and Gwyn, D. G. (1977). Gap junctions in the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus. Brain Res., 128, 374–8.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin, P. A. and Slawsky, M. (1977). Probable calcium spikes in hippocampal neurons. Brain Res., 135, 157–61.

    Article  CAS  PubMed  Google Scholar 

  • Shahani, B. T. and Young, R. R. (1978). Action tremors: a clinical neurophysiological review. In Desmedt, J. E. (ed.), Progress in Clinical Neurophysiology, vol. 5, Physiological Tremor, Pathological Tremors and Clonus, Karger, Basel, pp. 129–37.

    Google Scholar 

  • Sotelo, C., LlinĂ¡s, R. and Baker, R. (1974). Structural study of the inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J. Neurophysiol., 37, 541–9.

    CAS  PubMed  Google Scholar 

  • Spencer, H. R. (1886). Pharyngeal and laryngeal ‘nystagmus’. Lancet, 2, 702.

    Article  Google Scholar 

  • Szekely, G. (1965). Logical network for controlling limb movements in Urodela. Acta Physiol. Acad. Sci. Hung., 27, 285–9.

    CAS  PubMed  Google Scholar 

  • Tahmoush, A. J., Brooks, J. E. and Keltner, J. L. (1972). Palatal myoclonus associated with abnormal ocular and extremity movement: a polygraphic study. Arch. Neurol., 27, 431–40.

    Article  CAS  PubMed  Google Scholar 

  • Verhaart, W. J. C. and Voogd, J. (1962). Hypertrophy of the inferior olives in the cat. J. Neuropathol. Exp. Neurol., 21, 92–104.

    Article  CAS  PubMed  Google Scholar 

  • Villablanca, J. and Riobo, F. (1970). Electroencephalographic and behavioral effects of harmaline in intact cats and in cats with chronic mesencephalic transection. Psychopharmacologia, 17, 302–13.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. M. (1966). Central nervous mechanisms for the generation of rhythmic behavior in arthropods. Symp. Soc. Exp. Biol., 209, 199–228.

    Google Scholar 

  • Wisotzkey, H. and Cole, M. (1974). Reversible neurofilamentous change with deafferentation of the inferior olive in the monkey. J. Neuropathol. Exp. Neurol., 33, 187.

    Google Scholar 

  • Wong, R. K. S., Prince, D. A. and Basbaum, A. I. (1979). Intradendritic recordings from hippocampal neurons. Proc. Natl Acad. Sci. (USA), 76, 986–90.

    Article  CAS  Google Scholar 

  • Yarom, Y. and LlinĂ¡s, R. (1981). Oscillatory properties of inferior olive cells. A study of guinea pig brain stem slices in vitro. Soc. Neurosci. Abst., 7, 864.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1984 Rodolfo R. LlinĂ¡s

About this chapter

Cite this chapter

LlinĂ¡s, R.R. (1984). Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory properties of mammalian central neurones in vitro. In: Findley, L.J., Capildeo, R. (eds) Movement Disorders: Tremor. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06757-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06757-2_10

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-06759-6

  • Online ISBN: 978-1-349-06757-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics