Skip to main content

Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2779))

  • 571 Accesses

Abstract

This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

N∗(t):

Number of molecules in excited state at time t

k:

Sum of de-excitation rates

knr:

Sum of radiation-less de-excitation pathways

kem:

Rate of fluorescence emission

kr:

Sum of radiative de-excitation pathways

αi:

Pre-exponential factor

E(t):

Emission intensity as a function of time (t)

E0:

Maximum emission intensity

mem:

Depth of modulation of emission signal

Ï•:

Phase of any modulated signal

M:

Total depth of modulation for any modulated signal

Ï•em:

Phase of modulated emission signal

Ï•ex:

Phase of modulated excitation signal

Δϕ:

Phase shift between excitation and emission modulated signals

ω:

Angular modulation frequency

I(t):

Intensity of fluorescence

Ï„:

Fluorescence lifetime of the fluorophore

mex:

Depth of modulation of excitation signal

a:

Laser beam height and to the velocity of a cell crossing the laser beam at t0

G:

Angle of the cosine of the phase shift on a phasor graph

S:

Angle of the sine of the phase shift on a phasor graph

References

  1. Lakowicz JR, Szmacinski H (1993) Fluorescence lifetime-based sensing of pH, Ca 2+, K+ and glucose. Sens Actuator B-Chem 11(1):133–143

    Article  CAS  Google Scholar 

  2. Pinsky BG, Ladasky JJ, Lakowicz JR, Berndt K, Hoffman RA (1993) Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry A 14(2):123–135

    Article  CAS  Google Scholar 

  3. Steinkamp JA, Yoshida TM, Martin JC (1993) Flow cytometer for resolving signals from heterogeneous fluorescence emissions and quantifying lifetime in fluorochrome-labeled cells/particles by phase-sensitive detection. Rev Sci Instrum 64:3440–3450. https://doi.org/10.1063/1.1144265

    Article  CAS  Google Scholar 

  4. Steinkamp JA, Crissman HA (1993) Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. Cytometry 14(2):210–216. https://doi.org/10.1002/cyto.990140214

    Article  CAS  PubMed  Google Scholar 

  5. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer, New York. https://doi.org/10.1007/978-1-4757-3061-6

    Book  Google Scholar 

  6. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S (2012) Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 3:705

    Article  PubMed  Google Scholar 

  7. Deka C, Lehnert BE, Lehnert NM, Jones GM, Sklar LA, Steinkamp JA (1996) Analysis of fluorescence lifetime and quenching of FITC-conjugated antibodies on cells by phase-sensitive flow cytometry. Cytometry A 25(3):271–279

    Article  CAS  Google Scholar 

  8. Nedbal J, Visitkul V, Ortiz-Zapater E, Weitsman G, Chana P, Matthews DR, Ng T, Ameer-Beg SM (2015) Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening. Cytometry A 87(2):104–118

    Article  PubMed  Google Scholar 

  9. Gopich IV, Szabo A (2012) Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 109(20):7747–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sailer BL, Valdez JG, Steinkamp JA, Darzynkiewicz Z, Crissman HA (1997) Monitoring uptake of ellipticine and its fluorescence lifetime in relation to the cell cycle phase by flow cytometry. Exp Cell Res 236(1):259–267

    Article  CAS  PubMed  Google Scholar 

  11. Steinkamp JA, Lehnert BE, Lehnert NM (1999) Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry. J Immunol Methods 226(1):59–70

    Article  CAS  PubMed  Google Scholar 

  12. Steinkamp JA, Valdez YE, Lehnert BE (2000) Flow cytometric, phase-resolved fluorescence measurement of propidium iodide uptake in macrophages containing phagocytized fluorescent microspheres. Cytometry 39(1):45–55

    Article  CAS  PubMed  Google Scholar 

  13. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1997) Differential effects of deuterium oxide on the fluorescence lifetimes and intensities of dyes with different modes of binding to DNA. J Histochem Cytochem 45(2):165–175

    Article  CAS  PubMed  Google Scholar 

  14. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1996) Interactions of intercalating fluorochromes with DNA analyzed by conventional and fluorescence lifetime flow cytometry utilizing deuterium oxide. Cytometry A 25(2):164–172

    Article  CAS  Google Scholar 

  15. Sailer BL, Steinkamp JA, Crissman HA (1997) Flow cytometric fluorescence lifetime analysis of DNA-binding probes. Eur J Histochem 42:19–27

    Google Scholar 

  16. Sailer BL, Valdez JG, Steinkamp JA, Crissman HA (1998) Apoptosis induced with different cycle-perturbing agents produces differential changes in the fluorescence lifetime of DNA-bound ethidium bromide. Cytometry A 31(3):208–216

    Article  CAS  Google Scholar 

  17. Keij JF, Bell-Prince C, Steinkamp JA (1999) Simultaneous analysis of relative DNA and glutathione content in viable cells by phase-resolved flow cytometry. Cytometry A 35(1):48–54

    Article  CAS  Google Scholar 

  18. Steinkamp JA (2001) Time-resolved fluorescence measurements. Curr Protc Cytom 1.15:11-11.15.16

    Google Scholar 

  19. Cui HH, Valdez JG, Steinkamp JA, Crissman HA (2003) Fluorescence lifetime-based discrimination and quantification of cellular DNA and RNA with phase-sensitive flow cytometry. Cytometry A 52(1):46–55. https://doi.org/10.1002/cyto.a.10022

    Article  CAS  PubMed  Google Scholar 

  20. Gohar AV, Cao R, Jenkins P, Li W, Houston JP, Houston KD (2013) Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry. Biomed Opt Express 4(8):1390–1400

    Article  PubMed  PubMed Central  Google Scholar 

  21. Houston JP, Naivar MA, Freyer JP (2010) Digital analysis and sorting of fluorescence lifetime by flow cytometry. Cytometry A 77(9):861–872

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lubbeck JL, Dean KM, Ma H, Palmer AE, Jimenez R (2012) Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells. Anal Chem 84(9):3929–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao R, Pankayatselvan V, Houston JP (2013) Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals. Opt Express 21(12):14816–14831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manna P, Jimenez R (2015) Time and frequency-domain measurement of ground-state recovery times in red fluorescent proteins. J Phys Chem B 119(15):4944–4954

    Article  CAS  PubMed  Google Scholar 

  25. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16. https://doi.org/10.1529/biophysj.107.120154

    Article  CAS  PubMed  Google Scholar 

  26. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104(49):19494–19499. https://doi.org/10.1073/pnas.0708425104

    Article  PubMed  PubMed Central  Google Scholar 

  27. Periasamy A, Elangovan M, Elliott E, Brautigan DL (2002) Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells. Methods Mol Biol 183:89–100. https://doi.org/10.1385/1-59259-280-5:089

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541. https://doi.org/10.1111/j.1432-0436.2003.07109007.x

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Periasamy A (2015) Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Methods Mol Biol 1251:83–107. https://doi.org/10.1007/978-1-4939-2080-8_6

    Article  CAS  PubMed  Google Scholar 

  30. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York. https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

  31. Becker W (2012) Fluorescence lifetime imaging–techniques and applications. J Microsc 247(2):119–136

    Article  CAS  PubMed  Google Scholar 

  32. Jenkins P, Naivar MA, Houston JP (2015) Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres. J Biophotonics 8(11–12):908–917. https://doi.org/10.1002/jbio.201400115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587. https://doi.org/10.1073/pnas.1108161108

    Article  PubMed  PubMed Central  Google Scholar 

  34. Colyer RA, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71(3):201–213. https://doi.org/10.1002/jemt.20540

    Article  PubMed  Google Scholar 

  35. Fereidouni F, Esposito A, Blab GA, Gerritsen HC (2011) A modified phasor approach for analyzing time-gated fluorescence lifetime images. J Microsc 244(3):248–258. https://doi.org/10.1111/j.1365-2818.2011.03533.x

    Article  CAS  PubMed  Google Scholar 

  36. Houston JP, Naivar MA, Jenkins P, Freyer JP (2012) Capture of fluorescence decay times by flow cytometry. Curr Protoc Cytom 59:1.25.21–21.25. 21

    Google Scholar 

  37. Cao R, Jenkins P, Peria W, Sands B, Naivar M, Brent R, Houston JP (2016) Phasor plotting with frequency-domain flow cytometry. Opt Express 24(13):14596–14607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sands B, Jenkins P, Peria WJ, Naivar M, Houston JP, Brent R (2014) Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes. PLoS One 9(10):11. https://doi.org/10.1371/journal.pone.0109940

    Article  CAS  Google Scholar 

  39. Dean KM, Davis LM, Lubbeck JL, Manna P, Palmer AE, Jimenez R (2014) Microfluidic flow cytometer for multiparametric screening of fluorophore photophysics. Opt Soc Am:1–3

    Google Scholar 

  40. Sambrano J, Rodriguez F, Martin J, Houston JP (2021) Toward the development of an on-chip acoustic focusing fluorescence lifetime flow cytometer. Front Phys 9:647985. https://doi.org/10.3389/fphy.2021.647985

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lu Y, Lu J, Zhao J, Cusido J, Raymo FM, Yuan J, Yang S, Leif RC, Huo Y, Piper JA (2014) On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun 5:3741

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8(1):32–36

    Article  CAS  Google Scholar 

  43. Ding M, Chen D, Ma D, Liu P, Song K, Lu H, Ji Z (2015) Tuning the upconversion luminescence lifetimes of KYb2F7: Ho3+ nanocrystals for optical multiplexing. Chem Phys Chem 16(18):3784–3789

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Vacca G, Castillo M, Houston KD, Houston JP (2014) Fluorescence lifetime excitation cytometry by kinetic dithering. Electrophoresis 35(12–13):1846–1854. https://doi.org/10.1002/elps.201300618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kage D, Hoffmann K, Wittkamp M, Ameskamp J, Göhde W, Resch-Genger U (2018) Luminescence lifetime encoding in time-domain flow cytometry. Sci Rep 8(1):16715. https://doi.org/10.1038/s41598-018-35137-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kage D, Hoffmann K, Nifontova G, Krivenkov V, Sukhanova A, Nabiev I, Resch-Genger U (2020) Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Sci Rep 10(1):653. https://doi.org/10.1038/s41598-019-56938-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao R, Naivar MA, Wilder M, Houston JP (2014) Expanding the potential of standard flow cytometry by extracting fluorescence lifetimes from cytometric pulse shifts. Cytometry A 85(12):999–1010

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bitton A, Sambrano J, Valentino S, Houston J (2021) A review of new high-throughput methods designed for fluorescence lifetime sensing from cells and tissues. Front Phys 9:648553. https://doi.org/10.3389/fphy.2021.648553

    Article  PubMed  PubMed Central  Google Scholar 

  49. Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC (2020) Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25(7):1–43. https://doi.org/10.1117/1.JBO.25.7.071203

    Article  PubMed  Google Scholar 

  50. Ulku A, Ardelean A, Antolovic M, Weiss S, Charbon E, Bruschini C, Michalet X (2020) Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods Appl Fluoresc 8(2):024002. https://doi.org/10.1088/2050-6120/ab6ed7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mai H, Jarman A, Erdogan AT, Treacy C, Finlayson N, Henderson RK, Poland SP (2023) Development of a high-speed line-scanning fluorescence lifetime imaging microscope for biological imaging. Opt Lett 48(8):2042–2045. https://doi.org/10.1364/OL.482403

    Article  PubMed  Google Scholar 

  52. Xiao D, Zang Z, Sapermsap N, Wang Q, Xie W, Chen Y, Uei Li DD (2021) Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors. Biomed Opt Express 12(6):3450–3462. https://doi.org/10.1364/BOE.425663

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zickus V, Wu ML, Morimoto K, Kapitany V, Fatima A, Turpin A, Insall R, Whitelaw J, Machesky L, Bruschini C, Faccio D, Charbon E (2020) Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci Rep 10(1):20986. https://doi.org/10.1038/s41598-020-77737-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Esposito A, Gerritsen HC, Oggier T, Lustenberger F, Wouters FS (2006) Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics. J Biomed Opt 11(3):34016. https://doi.org/10.1117/1.2208999

    Article  CAS  PubMed  Google Scholar 

  55. Laine RF, Poudel C, Kaminski CF (2022) A method for the fast and photon-efficient analysis of time-domain fluorescence lifetime image data over large dynamic ranges. J Microsc 287(3):138–147. https://doi.org/10.1111/jmi.13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poudel C, Mela I, Kaminski CF (2020) High-throughput, multi-parametric, and correlative fluorescence lifetime imaging. Methods Appl Fluoresc 8(2):024005. https://doi.org/10.1088/2050-6120/ab7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karpf S, Riche CT, Di Carlo D, Goel A, Zeiger WA, Suresh A, Portera-Cailliau C, Jalali B (2020) Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat Commun 11(1):2062. https://doi.org/10.1038/s41467-020-15618-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, Schäfer-Korting M, Zoschke C, Alexiev U (2020) Faster, sharper, more precise: automated cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 10(14):6322–6336. https://doi.org/10.7150/thno.42581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bower AJ, Li J, Chaney EJ, Marjanovic M, Spillman DR, Boppart SA (2018) High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. Optica 5(10):1290–1296. https://doi.org/10.1364/OPTICA.5.001290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bower AJ, Sorrells JE, Li J, Marjanovic M, Barkalifa R, Boppart SA (2019) Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. Biomed Opt Express 10(12):6408–6421. https://doi.org/10.1364/BOE.10.006408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA (2021) Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. Biomed Opt Express 12(7):4003–4019. https://doi.org/10.1364/BOE.424533

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Q, Li Y, Xiao D, Zang Z, Jiao Z, Chen Y, Li DDU (2022) Simple and robust deep learning approach for fast fluorescence lifetime imaging. Sensors (Basel) 22(19):7293. https://doi.org/10.3390/s22197293

    Article  CAS  PubMed  Google Scholar 

  63. Xiao D, Zang Z, Wang Q, Jiao Z, Rocca FMD, Chen Y, Li DDU (2022) Smart wide-field fluorescence lifetime imaging system with CMOS single-photon avalanche diode arrays. Annu Int Conf IEEE Eng Med Biol Soc 2022:1887–1890. https://doi.org/10.1109/EMBC48229.2022.9870996

    Article  PubMed  Google Scholar 

  64. Xiao D, Zang Z, Xie W, Sapermsap N, Chen Y, Uei Li DD (2022) Spatial resolution improved fluorescence lifetime imaging via deep learning. Opt Express 30(7):11479–11494. https://doi.org/10.1364/OE.451215

    Article  PubMed  Google Scholar 

  65. Zang Z, Xiao D, Wang Q, Li Z, Xie W, Chen Y, Li DDU (2022) Fast analysis of time-domain fluorescence lifetime imaging via extreme learning machine. Sensors (Basel) 22(10):3758. https://doi.org/10.3390/s22103758

    Article  CAS  PubMed  Google Scholar 

  66. Zang Z, Xiao D, Wang Q, Jiao Z, Li Z, Chen Y, Li DD (2022) Hardware inspired neural network for efficient time-resolved biomedical imaging. Annu Int Conf IEEE Eng Med Biol Soc 2022:1883–1886. https://doi.org/10.1109/EMBC48229.2022.9871214

    Article  PubMed  Google Scholar 

  67. Zang Z, Xiao D, Wang Q, Jiao Z, Chen Y, Li DDU (2023) Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation. Methods Appl Fluoresc 11(2):025002. https://doi.org/10.1088/2050-6120/acc0d9

    Article  Google Scholar 

  68. Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Un N, Mazurkiewicz J, Barroso M, Yan P, Intes X (2019) Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc Natl Acad Sci U S A 116(48):24019–24030. https://doi.org/10.1073/pnas.1912707116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams GOS, Williams E, Finlayson N, Erdogan AT, Wang Q, Fernandes S, Akram AR, Dhaliwal K, Henderson RK, Girkin JM, Bradley M (2021) Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution. Nat Commun 12(1):6616. https://doi.org/10.1038/s41467-021-26837-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scipioni L, Rossetta A, Tedeschi G, Gratton E (2021) Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat Methods 18(5):542–550. https://doi.org/10.1038/s41592-021-01108-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1996) Interactions of intercalating fluorochromes with DNA analyzed by conventional and fluorescence lifetime flow cytometry utilizing deuterium oxide. Cytometry 25(2):164–172. https://doi.org/10.1002/(SICI)1097-0320(19961001)25:2<164::AID-CYTO5>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  72. Deka C, Cram LS, Habbersett R, Martin JC, Sklar LA, Steinkamp JA (1995) Simultaneous dual-frequency phase-sensitive flow cytometric measurements for rapid identification of heterogeneous fluorescence decays in fluorochrome-labeled cells and particles. Cytometry A 21(4):318–328

    Article  CAS  Google Scholar 

  73. Sailer BL, Steinkamp JL, Crissman HA (1998) Flow cytometric lifetime analysis of DNA-binding probes. Eur J Histochem 48:19–27

    Google Scholar 

  74. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254(11):4764–4771

    Article  CAS  PubMed  Google Scholar 

  75. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89(4):1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. König K, So PT, Mantulin WW, Tromberg BJ, Gratton E (1996) Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc 183(Pt 3):197–204

    Article  PubMed  Google Scholar 

  77. Andersson H, Baechi T, Hoechl M, Richter C (1998) Autofluorescence of living cells. J Microsc 191(Pt 1):1–7

    Article  CAS  PubMed  Google Scholar 

  78. Niesner R, Peker B, Schlüsche P, Gericke KH (2004) Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. ChemPhysChem 5(8):1141–1149. https://doi.org/10.1002/cphc.200400066

    Article  CAS  PubMed  Google Scholar 

  79. Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19):8766–8773. https://doi.org/10.1158/0008-5472.CAN-04-3922

    Article  CAS  PubMed  Google Scholar 

  80. Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam N (2005) Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65(4):1180–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Buschke DG, Squirrell JM, Ansari H, Smith MA, Rueden CT, Williams JC, Lyons GE, Kamp TJ, Eliceiri KW, Ogle BM (2011) Multiphoton flow cytometry to assess intrinsic and extrinsic fluorescence in cellular aggregates: applications to stem cells. Microsc Microanal 17(4):540–554

    Article  CAS  PubMed  Google Scholar 

  82. Alturkistany F, Nichani K, Houston KD, Houston JP (2019) Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry. Cytometry A 95(1):70–79. https://doi.org/10.1002/cyto.a.23606

    Article  CAS  PubMed  Google Scholar 

  83. Li W, Houston KD, Houston JP (2017) Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry. Sci Rep 7(1):40341–40341. https://doi.org/10.1038/srep40341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang Z, Shcherbakova D, Verkhusha V, Houston J (2016) Developing a time-resolved flow cytometer for fluorescence lifetime measurements of near-infrared fluorescent proteins. In: Conference on lasers and electro-optics CLEO 2016. Optical Society of America, San Jose

    Google Scholar 

  85. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2012) Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75(3):271–281. https://doi.org/10.1002/jemt.21054

    Article  PubMed  Google Scholar 

  86. Suzuki M, Sakata I, Sakai T, Tomioka H, Nishigaki K, Tramier M (2015) A high-throughput direct FRET-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence-lifetime measurements. Anal Biochem 491:10–17

    Article  CAS  PubMed  Google Scholar 

  87. Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular α4-integrin conformational activation. Biophys J 85(6):3951–3962. https://doi.org/10.1016/S0006-3495(03)74809-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chigaev A, Smagley Y, Haynes MK, Ursu O, Bologa CG, Halip L, Oprea T, Waller A, Carter MB, Zhang Y (2015) FRET detection of lymphocyte function–associated antigen-1 conformational extension. Mol Biol Cell 26(1):43–54

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chigaev A, Blenc AM, Braaten JV, Kumaraswamy N, Kepley CL, Andrews RP, Oliver JM, Edwards BS, Prossnitz ER, Larson RS (2001) Real time analysis of the affinity regulation of α4-integrin. The physiologically activated receptor is intermediate in affinity between resting and Mn2+ or antibody activation. J Biol Chem 276(52):48670–48678

    Article  CAS  PubMed  Google Scholar 

  90. Nichani K, Li J, Suzuki M, Houston J (2020) Evaluation of caspase-3 activity during apoptosis with fluorescence lifetime-based cytometry measurements and phasor analyses. Cytometry A 97(12):1265–1275. https://doi.org/10.1002/cyto.a.24207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sambrano J, Chigaev A, Nichani KS, Smagley Y, Sklar LA, Houston JP (2018) Evaluating integrin activation with time-resolved flow cytometry. J Biomed Opt 23(7):1–10. https://doi.org/10.1117/1.JBO.23.7.075004

    Article  PubMed  Google Scholar 

  92. Mukherjee S, Hung ST, Douglas N, Manna P, Thomas C, Ekrem A, Palmer AE, Jimenez R (2020) Engineering of a brighter variant of the FusionRed fluorescent protein using lifetime flow cytometry and structure-guided mutations. Biochemistry 59(39):3669–3682. https://doi.org/10.1021/acs.biochem.0c00484

    Article  CAS  PubMed  Google Scholar 

  93. Deka C, Sklar LA, Steinkamp JA (1994) Fluorescence lifetime measurements in a flow cytometer by amplitude demodulation using digital data acquisition technique. Cytometry 17(1):94–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica P. Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Houston, J.P., Valentino, S., Bitton, A. (2024). Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. In: Hawley, T.S., Hawley, R.G. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 2779. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3738-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3738-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3737-1

  • Online ISBN: 978-1-0716-3738-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics