Skip to main content

Imaging of Extravasation of Splenocytes in the Dorsal Skinfold Window Chamber

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2773))

  • 218 Accesses

Abstract

Infiltration of immune cells into the tumor is one of the major drivers of antitumor immune response, which can direct the outcome of anticancer therapies. In mice, implantation of dorsal skinfold window chamber (DSWC) combined with intravital confocal fluorescence microscopy allows real-time observation of splenocyte extravasation and infiltration into tumors. Here, we describe a detailed procedure of the DSWC implantation, splenocyte isolation and fluorescent labeling, intravenous injection of labeled splenocytes, and imaging of splenocyte extravasation into tumors using confocal fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galluzzi L, Chan TA, Kroemer G et al (2018) The hallmarks of successful anticancer immunotherapy. Sci Transl Med 10:1–15. https://doi.org/10.1126/scitranslmed.aat7807

    Article  CAS  Google Scholar 

  2. Gao G, Wang Z, Qu X, Zhang Z (2020) Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer 20:179. https://doi.org/10.1186/s12885-020-6668-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhang Y, Zhang Z (2020) The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17:807–821. https://doi.org/10.1038/s41423-020-0488-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Blair TC, Alice AF, Zebertavage L et al (2021) The dynamic entropy of tumor immune infiltrates: the impact of recirculation, antigen-specific interactions, and retention on T cells in tumors. Front Oncol 11:1–21. https://doi.org/10.3389/fonc.2021.653625

    Article  CAS  Google Scholar 

  5. Okla K, Farber DL, Zou W (2021) Tissue-resident memory T cells in tumor immunity and immunotherapy. J Exp Med 218:1–14. https://doi.org/10.1084/jem.20201605

    Article  CAS  Google Scholar 

  6. Li T, Fu J, Zeng Z et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48:W509–W514. https://doi.org/10.1093/NAR/GKAA407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li B, Severson E, Pignon JC et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:1–16. https://doi.org/10.1186/s13059-016-1028-7

    Article  CAS  Google Scholar 

  8. Shelton SE, Nguyen HT, Barbie DA, Kamm RD (2021) Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 24:101985. https://doi.org/10.1016/j.isci.2020.101985

    Article  CAS  PubMed  Google Scholar 

  9. Fomitcheva-Khartchenko A, Kashyap A, Geiger T, Kaigala GV (2022) Space in cancer biology: its role and implications. Trends Cancer 8:1019–1032. https://doi.org/10.1016/j.trecan.2022.07.008

    Article  CAS  PubMed  Google Scholar 

  10. Lian N, Oren R, Filip B, Michal N (2014) Imaging aspects of the tumor stroma with therapeutic implications. Pharmacol Ther 141:192–208. https://doi.org/10.1016/j.pharmthera.2013.10.003

    Article  CAS  Google Scholar 

  11. Li C, Shan S, Braun RD, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92:143–147

    Article  CAS  PubMed  Google Scholar 

  12. Biel NM, Lee JA, Sorg BS, Siemann DW (2014) Limitations of the dorsal skinfold window chamber model in evaluating anti-angiogenic therapy during early phase of angiogenesis. Vasc Cell 6:1–11. https://doi.org/10.1186/2045-824X-6-17

    Article  CAS  Google Scholar 

  13. Kaskas NM, Moore-Medlin T, McClure GB et al (2014) Serum biomarkers in head and neck squamous cell cancer. JAMA Otolaryngol Head Neck Surg 140:5–11. https://doi.org/10.1001/jamaoto.2013.5688

    Article  PubMed  Google Scholar 

  14. Markelc B, Bellard E, Sersa G et al (2018) Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J Control Release 276:30–41. https://doi.org/10.1016/j.jconrel.2018.02.032

    Article  CAS  PubMed  Google Scholar 

  15. Markelc B, Sersa G, Cemazar M (2013) Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0059557

    Article  CAS  Google Scholar 

  16. Hak S, Reitan NK, Haraldseth O, De Lange DC (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13:113–130. https://doi.org/10.1007/s10456-010-9176-y

    Article  PubMed  Google Scholar 

  17. Perrone F, Craparo EF, Cemazar M et al (2021) Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J Control Release 330:1132–1151. https://doi.org/10.1016/j.jconrel.2020.11.020

    Article  CAS  PubMed  Google Scholar 

  18. Murty S, Haile ST, Beinat C et al (2020) Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Onco Targets Ther 9. https://doi.org/10.1080/2162402X.2020.1757360

  19. Savarin M, Prevc A, Rzek M et al (2018) Intravital monitoring of vasculature after targeted gene therapy alone or combined with tumor irradiation. Technol Cancer Res Treat 17:1–8. https://doi.org/10.1177/1533033818784208

    Article  Google Scholar 

  20. Zhang M, Chakraborty SK, Sampath P et al (2015) Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging. J Clin Invest 125:3915–3927. https://doi.org/10.1172/JCI81086

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hong S, Pawel GT, Pei R, Lu Y (2021) Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater 16:044108. https://doi.org/10.1088/1748-605X/abfd11

    Article  CAS  Google Scholar 

  22. Seynhaeve ALB, Ten Hagen TLM (2018) Intravital microscopy of tumor-associated vasculature using advanced dorsal skinfold window chambers on transgenic fluorescent mice. J Vis Exp 2018:1–10. https://doi.org/10.3791/55115

    Article  CAS  Google Scholar 

  23. Ng TSC, Allen HH, Rashidian M, Miller MA (2022) Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 67:102117. https://doi.org/10.1016/j.cbpa.2022.102117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research program P3-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bostjan Markelc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bozic, T., Markelc, B. (2024). Imaging of Extravasation of Splenocytes in the Dorsal Skinfold Window Chamber. In: Čemažar, M., Jesenko, T., Lampreht Tratar, U. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 2773. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3714-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3714-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3713-5

  • Online ISBN: 978-1-0716-3714-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics