Skip to main content

Analyzing Photoactivation with Diffusion Models to Study Transport in the Endoplasmic Reticulum Network

  • Protocol
  • First Online:
The Plant Endoplasmic Reticulum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2772))

  • 243 Accesses

Abstract

Photoactivation is a paradigm consisting in local molecular fluorescent activation by laser illumination in a chosen region (source) while measuring the concentration at a target region. Data-driven modeling is concerned with the following questions: how from the measurement in these two regions is it possible to infer the properties of molecular propagation? How is it possible to use such responses to infer motions occurring in networks such as the endoplasmic reticulum? In this book chapter, we shall review the data-driven analysis based on diffusion-transport models and numerical simulations to interpret the photoactivation dynamics and extract biophysical parameters. We will discuss modeling approaches to reconstruct local network properties from photoactivation transients.

Matteo Dora and Frédéric Paquin-Lefebvre equally contributed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lippincott-Schwartz J, Snapp EL, Phair RD (2018) The development and enhancement of frap as a key tool for investigating protein dynamics. Biophys J 115(7):1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  CAS  PubMed  Google Scholar 

  3. Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32(4):445–450

    Article  CAS  PubMed  Google Scholar 

  4. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456

    Article  CAS  PubMed  Google Scholar 

  5. Foi A, Trimeche M, Katkovnik V, Egiazarian K (2008) Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans Image Process 17(10):1737–1754

    Article  PubMed  Google Scholar 

  6. Luisier F, Blu T, Unser M (2011) Image denoising in mixed poisson-Gaussian Noise. IEEE Trans Image Process 20(3):696–708

    Article  PubMed  Google Scholar 

  7. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  PubMed  Google Scholar 

  8. Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, Aila T (2018) Noise2Noise: learning image restoration without clean data. In: Proceedings of machine learning research, vol 80. PMLR, New York, pp 2965–2974

    Google Scholar 

  9. Holcman D, Parutto P, Chambers JE, Fantham M, Young LJ, Marciniak SJ, Kaminski CF, Ron D, Avezov E (2018) Single particle trajectories reveal active endoplasmic reticulum luminal flow. Nat Cell Biol 20(10):1118–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dora M, Obara CJ, Abel T, Lippincott-Schwartz J, Holcman D (2023) Simultaneous photoactivation and high-speed structural tracking reveal diffusion-dominated motion in the endoplasmic reticulum. bioRxiv, pp 2023–04

    Google Scholar 

  11. Nehls S, Snapp EL, Cole NB, Zaal KJ, Kenworthy AK, Roberts TH, Ellenberg J, Presley JF, Siggia E, Lippincott-Schwartz J (2000) Dynamics and retention of misfolded proteins in native er membranes. Nature Cell Biol 2(5):288–295

    Article  CAS  PubMed  Google Scholar 

  12. Hozé N, Holcman D (2017) Statistical methods for large ensembles of super-resolution stochastic single particle trajectories in cell biology. Annu Rev Stat Appl 4:189–223

    Article  Google Scholar 

  13. Ölveczky BP, Verkman A (1998) Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J 74(5):2722–2730

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sbalzarini IF, Mezzacasa A, Helenius A, Koumoutsakos P (2005) Effects of organelle shape on fluorescence recovery after photobleaching. Biophys J 89(3):1482–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sbalzarini IF, Hayer A, Helenius A, Koumoutsakos P (2006) Simulations of (an) isotropic diffusion on curved biological surfaces. Biophys J 90(3):878–885

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Yu Z, Obara CJ, Mittal K, Lippincott-Schwarz J, Koslover EF (2022) Unraveling Single-Particle Trajectories Confined in Tubular Networks. arXiv preprint arXiv:2112.05884

    Google Scholar 

  17. Speckner K, Stadler L, Weiss M (2018) Anomalous dynamics of the endoplasmic reticulum network. Phys Rev E 98(1):012406

    Article  CAS  PubMed  Google Scholar 

  18. Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E, et al (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354(6311):aaf3928

    Google Scholar 

  19. Metzler R, Redner S, Oshanin G (2014) First-passage phenomena and their applications, vol. 35. World Scientific, Singapore

    Book  Google Scholar 

  20. Crank J (1979) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  21. Abramowitz M, Stegun IA, Romer RH (1988) Handbook of mathematical functions with formulas, graphs, and mathematical tables

    Google Scholar 

  22. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2 edn. Oxford University Press, Oxford

    Google Scholar 

  23. Holcman D, Schuss Z (2015) Stochastic narrow escape in molecular and cellular biology. Anal Appl Springer New York 48:108–112

    Google Scholar 

  24. Nitzsche B, Bormuth V, Bräuer C, Howard J, Ionov L, Kerssemakers J, Korten T, Leduc C, Ruhnow F, Diez S (2010) Studying kinesin motors by optical 3d-nanometry in gliding motility assays. Methods Cell Biol 95:247–271

    Article  CAS  PubMed  Google Scholar 

  25. Zhou HM, Brust-Mascher I, Scholey JM (2001) Direct visualization of the movement of the monomeric axonal transport motor unc-104 along neuronal processes in living caenorhabditis elegans. J Neurosci 21(11):3749–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mangeol P, Prevo B, Peterman EJ (2016) Kymographclear and kymographdirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol Biol Cell 27(12):1948–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jakobs MA, Dimitracopoulos A, Franze K (2019) Kymobutler, a deep learning software for automated kymograph analysis. Elife 8:e42288

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dora M, Holcman D (2020) Active flow network generates molecular transport by packets: case of the endoplasmic reticulum. Proc R Soc B 287(1930):20200493

    Article  Google Scholar 

  29. Lovász L, et al (1993) Random walks on graphs: A survey. Combinatorics, Paul Erdős is Eighty 2(1):1–46

    Google Scholar 

  30. Masuda N, Porter MA, Lambiotte R (2017) Random walks and diffusion on networks. Phys Rep 716:1–58

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris Obara for critical feedback on this manuscript. This project has received funding from the European Research Council (ERC) to D.H. under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 882673). D.H. also gratefully acknowledges the support from the Agence Nationale de la Recherche via the grants ANR NEUC 00001 and ANR AstroXcite. F.P.-L. received funding from the Fondation ARC (grant No. ARCPDF12020020001505).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Dora, M., Paquin-Lefebvre, F., Holcman, D. (2024). Analyzing Photoactivation with Diffusion Models to Study Transport in the Endoplasmic Reticulum Network. In: Kriechbaumer, V. (eds) The Plant Endoplasmic Reticulum. Methods in Molecular Biology, vol 2772. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3710-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3710-4_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3709-8

  • Online ISBN: 978-1-0716-3710-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics