Skip to main content

Diethylnitrosamine-Induced Liver Tumorigenesis in Mice Under High-Hat High-Sucrose Diet: Stepwise High-Resolution Ultrasound Imaging and Histopathological Correlations

  • Protocol
  • First Online:
Liver Carcinogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2769))

  • 372 Accesses

Abstract

The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC), WHO Cancer Today GLOBOCAN 2020. https://gco.iarc.fr/today

  2. Llovet JM, Kelley RK, Villanueva A et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7:6

    Google Scholar 

  3. Galle PR, Forner A, Llovet JM et al (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69:182–236

    Article  Google Scholar 

  4. International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664

    Article  Google Scholar 

  5. Park YN (2011) Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med 135:704–715

    Article  PubMed  Google Scholar 

  6. Zucman-Rossi J, Villanueva A, Nault J-C et al (2015) Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149:1226–1239.e4

    Article  PubMed  Google Scholar 

  7. Schulze K, Imbeaud S, Letouzé E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47:505–511

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anstee QM, Reeves HL, Kotsiliti E et al (2019) From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16:411–428

    Article  PubMed  Google Scholar 

  9. Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295

    Article  PubMed  Google Scholar 

  10. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65:1038–1048

    Article  PubMed  Google Scholar 

  11. Nakagawa H, Umemura A, Taniguchi K et al (2014) ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26:331–343

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim JY, Garcia-Carbonell R, Yamachika S et al (2018) ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175:133–145.e15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boege Y, Malehmir M, Healy ME et al (2017) A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32:342–359.e10

    Article  PubMed  PubMed Central  Google Scholar 

  14. Febbraio MA, Reibe S, Shalapour S et al (2019) Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab 29:18–26

    Article  PubMed  Google Scholar 

  15. Márquez-Quiroga LV, Arellanes-Robledo J, Vásquez-Garzón VR et al (2022) Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma. Biochem Pharmacol 195:114845

    Article  PubMed  Google Scholar 

  16. Tolba R, Kraus T, Liedtke C et al (2015) Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim 49:59–69

    Article  PubMed  Google Scholar 

  17. Verna L, Whysner J, Williams GM (1996) N-Nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 71:57–81

    Article  PubMed  Google Scholar 

  18. Connor F, Rayner TF, Aitken SJ et al (2018) Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol 69:840–850

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dow M, Pyke RM, Tsui BY et al (2018) Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci USA 115:E9879

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schulien I, Hasselblatt P (2021) Diethylnitrosamine-induced liver tumorigenesis in mice. In: Carcinogen-driven mouse models of oncogenesis. Elsevier, pp 137–152

    Chapter  Google Scholar 

  21. Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kushida M, Kamendulis LM, Peat TJ et al (2011) Dose-related induction of hepatic preneoplastic lesions by diethylnitrosamine in C57BL/6 mice. Toxicol Pathol 39:776–786

    Article  PubMed  Google Scholar 

  23. Naugler WE, Sakurai T, Kim S et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    Article  PubMed  Google Scholar 

  24. Fernández-Domínguez I, Echevarria-Uraga JJ, Gómez N et al (2011) High-frequency ultrasound imaging for longitudinal evaluation of non-alcoholic fatty liver disease progression in mice. Ultrasound Med Biol 37:1161–1169

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moran CM, Thomson AJW (2020) Preclinical ultrasound imaging—a review of techniques and imaging applications. Front Phys 8:124

    Article  Google Scholar 

  26. Penninck D, d’Anjou M-A (2015) Liver. In: Penninck D, d’Anjou M-A (eds) Atlas of small animal ultrasonography. Wiley, Ames, pp 183–238

    Google Scholar 

  27. Xia M-F, Yan H-M, He W-Y et al (2012) Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity 20:444–452

    Article  PubMed  Google Scholar 

  28. Lessa AS, Paredes BD, Dias JV et al (2010) Ultrasound imaging in an experimental model of fatty liver disease and cirrhosis in rats. BMC Vet Res 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Knoblaugh SE, Randolph-Habecker J (2018) Necropsy and histology. In: Treuting PM, Dintzis SM, Montine KS (eds) Comparative anatomy and histology: a mouse, rat, and human atlas. Elsevier, pp 23–51

    Chapter  Google Scholar 

  30. Ward JM, Schofield PN, Sundberg JP (2017) Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Anim 46:146–151

    Article  Google Scholar 

  31. Thoolen B, Maronpot RR, Harada T et al (2010) Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 38:5S–81S

    Article  PubMed  Google Scholar 

  32. Deschl U, Cattley RC, Harada T et al (2001) Liver, gallbladder, and exocrine pancreas. In: Mohr U (ed) International classification of rodent Tumors: the mouse. Springer, Berlin/Heidelberg, pp 59–86

    Chapter  Google Scholar 

  33. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  34. Thoolen B, ten Kate FJW, van Diest PJ et al (2012) Comparative histomorphological review of rat and human hepatocellular proliferative lesions. J Toxicol Pathol 25:189–199

    Article  PubMed  PubMed Central  Google Scholar 

  35. Becker FF (1982) Morphological classification of mouse liver Tumors based on biological characteristics. Cancer Res 42:3918–3923

    PubMed  Google Scholar 

  36. Friemel J, Frick L, Unger K et al (2019) Characterization of HCC mouse models: towards an Etiology-oriented subtyping approach. Mol Cancer Res 17:1493–1502

    Article  PubMed  Google Scholar 

  37. Vesselinovitch SD, Mihailovich N, Rao KVN (1978) Morphology and metastatic nature of induced hepatic nodular lesions in C57BL x C3H F, mice. Cancer Res 38:2003–2010

    PubMed  Google Scholar 

  38. Maronpot RR (2009) Biological basis of differential susceptibility to Hepatocarcinogenesis among mouse strains. J Toxicol Pathol 22:11–33

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang JS, Wanibuchi H, Morimura K et al (2007) Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res 67:11141–11146

    Article  PubMed  Google Scholar 

  40. Maeda S, Kamata H, Luo J-L et al (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  Google Scholar 

  41. Sakurai T, He G, Matsuzawa A et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vesselinovitch SD, Mihailovich N (1983) Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res 43:4253–4259

    PubMed  Google Scholar 

  43. Diwan BA, Ward JM, Ramljak D et al (1997) Promotion by helicobacter hepaticus-induced hepatitis of hepatic tumors initiated by N-nitrosodimethylamine in male a/JCr mice. Toxicol Pathol 25:597–605

    Article  PubMed  Google Scholar 

  44. Turner PV, Brabb T, Pekow C et al (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613

    PubMed  PubMed Central  Google Scholar 

  45. Gombar CT, Harrington GW, Pylypiw HM et al (1990) Interspecies scaling of the pharmacokinetics of N-nitrosodimethylamine. Cancer Res 50:4366–4370

    PubMed  Google Scholar 

  46. Fiebig T, Boll H, Figueiredo G et al (2012) Three-dimensional in vivo imaging of the murine liver: a micro-computed tomography-based anatomical study. PLoS One 7:e31179

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sastra SA, Olive KP (2013) Quantification of murine pancreatic tumors by high-resolution ultrasound. In: Pancreatic cancer. Humana Press, pp 249–266

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the staff members from the animal core facility (Centre d’Exploration Fonctionnelle [CEF], Centre de Recherche des Cordeliers) and the histology core facilities (Centre d’Histologie, Imagerie et Cytométrie [CHIC], Centre de Recherche des Cordeliers and plateforme d’Histologie, Immunomarquage et Microdissection laser [HIST’IM], Institut Cochin). The authors also thank Dr. Vet. Med. Cécile Cazin for the helpful discussion and comments on the ultrasound examination of the normal and pathologic mouse liver.

The authors are supported by French grants from Institut National de la Santé et de la Recherche Médicale (INSERM), Fondation pour la Recherche Médicale (Équipe FRM: EQU201903007824), Ligue Nationale Contre le Cancer (Equipe labellisée LNCC), Institut National du Cancer (PRTK-2017, PLBIO18-107), Agence Nationale de Recherche ANR (ANR-16-CE14; ANR-19-CE14-0044-01), Fondation ARC (Association de Recherche sur le Cancer), Ligue Contre le Cancer (comité de Paris), Cancéropôle Île-de-France (Emergence 2015), Association Française pour l’Étude du Foie (AFEF-SUBV 2017; AFEF-SUBV 2019), EVA-Plan Cancer INSERM HTE and SIRIC CARPEM. Dr. Vet. Med. P. Cordier is a recipient of Plan Cancer INSERM (“Soutien pour la formation à la recherche fondamentale et translationnelle en cancérologie” program). F. Sangouard is a recipient of Ministère de la Recherche funding (PhD grant). J. Fang is a recipient of Chinese Scholarship Council. P.C., F.S., and J.F. are members of Université Paris Cité IdEx #ANR-18-IDEX-0001 funded by the French Government through its “Investments for the Future” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Celton-Morizur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cordier, P., Sangouard, F., Fang, J., Kabore, C., Desdouets, C., Celton-Morizur, S. (2024). Diethylnitrosamine-Induced Liver Tumorigenesis in Mice Under High-Hat High-Sucrose Diet: Stepwise High-Resolution Ultrasound Imaging and Histopathological Correlations. In: Kroemer, G., Pol, J., Martins, I. (eds) Liver Carcinogenesis. Methods in Molecular Biology, vol 2769. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3694-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3694-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3693-0

  • Online ISBN: 978-1-0716-3694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics