Skip to main content

The Applications of ELISpot in the Identification and Treatment of Various Forms of Tuberculosis and in the Cancer Immunotherapies

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2768))

  • 186 Accesses

Abstract

ELISpot (enzyme-linked immunospot) is a powerful immunological tool for the detection of cytokine-secreting cells at a single-cell resolution. It is widely used for the diagnosis of various infectious diseases, e.g., tuberculosis and sarcoidosis, and it is also widely used in cancer immunotherapy research. Its ability to distinguish between active and latent forms of tuberculosis makes it an extremely powerful tool for epidemiological studies and contact tracing. In addition to that, it is a very useful tool for the research and development of cancer immunotherapies. ELISpot can be employed to assess the immune responses against various tumor-associated antigens, which could provide valuable insights for the development of effective therapies against cancers. Furthermore, it plays a crucial role to the evaluation of immune responses against specific antigens that not only could aid in vaccine development but also assist in treatment monitoring and development of therapeutic and diagnostic strategies. This chapter briefly describes some of the applications of ELISpot in tuberculosis and cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richeldi L, Losi M, Cerri S et al (2008) Using ELISpot technology to improve the diagnosis of tuberculosis infection: from the bench to the T-SPOT.TB assay. Expert Rev Respir Med 2(2):253–260. https://doi.org/10.1586/17476348.2.2.253

    Article  CAS  PubMed  Google Scholar 

  2. Codecasa L, Mantegani P, Galli L et al (2006) An in-house RD1-based enzyme-linked immunospot-gamma interferon assay instead of the tuberculin skin test for diagnosis of latent Mycobacterium tuberculosis infection. J Clin Microbiol 44(6):1944–1950. https://doi.org/10.1128/JCM.02265-05

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nkurunungi G, Lutangira JE, Lule SA et al (2012) Determining Mycobacterium tuberculosis infection among BCG-immunised Ugandan children by T-SPOT.TB and tuberculin skin testing. PLoS One 7(10):e47340. https://doi.org/10.1371/journal.pone.0047340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butterfield LH, Buffo MJ (2014) Immunologic monitoring of cancer vaccine trials using the ELISPOT assay. Methods Mol Biol 1102:71–82. https://doi.org/10.1007/978-1-62703-727-3_5

    Article  CAS  PubMed  Google Scholar 

  5. Petersen E, Al-Abri S, Chakaya J et al (2022) World TB day 2022: revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic. Int J Infect Dis 124(Suppl 1):S1–S3. https://doi.org/10.1016/j.ijid.2022.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh VK, Chandra S, Kumar S et al (2009) A common medical error: lung cancer misdiagnosed as sputum negative tuberculosis. Asian Pac J Cancer Prev 10(3):335–338

    PubMed  Google Scholar 

  7. Lalvani A, Pareek M (2010) Interferon gamma release assays: principles and practice. Enferm Infecc Microbiol Clin 28(4):245–252. https://doi.org/10.1016/j.eimc.2009.05.012

    Article  PubMed  Google Scholar 

  8. Sharma SK, Tahir M, Mohan A et al (2006) Diagnostic accuracy of ascitic fluid IFN-gamma and adenosine deaminase assays in the diagnosis of tuberculous ascites. J Interf Cytokine Res 26(7):484–488. https://doi.org/10.1089/jir.2006.26.484

    Article  CAS  Google Scholar 

  9. Cho K, Cho E, Kwon S et al (2012) Factors associated with indeterminate and false negative results of QuantiFERON-TB gold in-tube test in active tuberculosis. Tuberc Respir Dis (Seoul) 72(5):416–425. https://doi.org/10.4046/trd.2012.72.5.416

    Article  PubMed  Google Scholar 

  10. Tincati C, Cappione Iii AJ, Snyder-Cappione JE (2012) Distinguishing latent from active Mycobacterium tuberculosis infection using Elispot assays: looking beyond interferon-gamma. Cell 1(2):89–99. https://doi.org/10.3390/cells1020089

    Article  CAS  Google Scholar 

  11. Murakami S, Takeno M, Kobayashi M et al (2009) ELISPOT response to Mycobacterium tuberculosis antigens for diagnosing and monitoring tuberculosis patient therapy. Kansenshogaku Zasshi 83(3):229–235. https://doi.org/10.11150/kansenshogakuzasshi.83.229

    Article  PubMed  Google Scholar 

  12. Zhang M, Wang H, Liao M et al (2010) Diagnosis of latent tuberculosis infection in bacille Calmette-Guerin vaccinated subjects in China by interferon-gamma ELISpot assay. Int J Tuberc Lung Dis 14(12):1556–1563

    CAS  PubMed  Google Scholar 

  13. Hill PC, Brookes RH, Fox A et al (2007) Longitudinal assessment of an ELISpot test for Mycobacterium tuberculosis infection. PLoS Med 4(6):e192. https://doi.org/10.1371/journal.pmed.0040192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sibley LS, White AD, Marriott A et al (2012) ELISPOT refinement using spot morphology for assessing host responses to tuberculosis. Cell 1(1):5–14. https://doi.org/10.3390/cells1010005

    Article  CAS  Google Scholar 

  15. Della Bella C, Spinicci M, Grassi A et al (2018) Novel M. tuberculosis specific IL-2 ELISpot assay discriminates adult patients with active or latent tuberculosis. PLoS One 13(6):e0197825. https://doi.org/10.1371/journal.pone.0197825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manjaly Thomas ZR, Satti I, Marshall JL et al (2019) Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: a phase I randomised controlled trial. PLoS Med 16(4):e1002790. https://doi.org/10.1371/journal.pmed.1002790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malyguine AM, Strobl S, Dunham K et al (2012) ELISpot assay for monitoring Cytotoxic T Lymphocytes (CTL) activity in cancer vaccine clinical trials. Cell 1(2):111–126. https://doi.org/10.3390/cells1020111

    Article  CAS  Google Scholar 

  18. Hanson J, Roen DR, Lehmann PV (2018) Four color ImmunoSpot((R)) assays for identification of effector T-cell lineages. Methods Mol Biol 1808:51–62. https://doi.org/10.1007/978-1-4939-8567-8_5

    Article  CAS  PubMed  Google Scholar 

  19. van Pul KM, Vuylsteke R, de Beijer MTA et al (2020) Breast cancer-induced immune suppression in the sentinel lymph node is effectively countered by CpG-B in conjunction with inhibition of the JAK2/STAT3 pathway. J Immunother Cancer 8(2). https://doi.org/10.1136/jitc-2020-000761

  20. Podaza E, Carri I, Aris M et al (2020) Evaluation of T-cell responses against shared melanoma associated antigens and predicted neoantigens in cutaneous melanoma patients treated with the CSF-470 allogeneic cell vaccine plus BCG and GM-CSF. Front Immunol 11:1147. https://doi.org/10.3389/fimmu.2020.01147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bulgarelli J, Piccinini C, Petracci E et al (2021) Radiotherapy and high-dose Interleukin-2: clinical and immunological results of a proof of principle study in metastatic melanoma and renal cell carcinoma. Front Immunol 12:778459. https://doi.org/10.3389/fimmu.2021.778459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Negri D, Sestili P, Borghi M et al (2020) Enzyme-linked immunospot assay to monitor antigen-specific cellular immune responses in mouse tumor models. Methods Enzymol 632:457–477. https://doi.org/10.1016/bs.mie.2019.05.058

    Article  PubMed  Google Scholar 

  23. Butterfield LH, Disis ML, Fox BA et al (2008) A systematic approach to biomarker discovery; preamble to “the iSBTc-FDA taskforce on immunotherapy biomarkers”. J Transl Med 6:81. https://doi.org/10.1186/1479-5876-6-81

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. https://doi.org/10.1038/nrc3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slota M, Lim JB, Dang Y et al (2011) ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 10(3):299–306. https://doi.org/10.1586/erv.10.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodig SJ (2019) Detecting alkaline phosphatase-labeled cells. Cold Spring Harb Protoc 2019(4). https://doi.org/10.1101/pdb.prot099721

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, H.K. (2024). The Applications of ELISpot in the Identification and Treatment of Various Forms of Tuberculosis and in the Cancer Immunotherapies. In: Kalyuzhny, A.E. (eds) Handbook of ELISPOT . Methods in Molecular Biology, vol 2768. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3690-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3690-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3689-3

  • Online ISBN: 978-1-0716-3690-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics