Skip to main content

Analysis of Caenorhabditis Protein Glycosylation

  • Protocol
  • First Online:
Recombinant Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2762))

Abstract

Glycoproteins result from post-translational modification of proteins by glycans attached to certain side chains, with possible heterogeneity due to different structures being possible at the same glycosylation site.

In contrast to the mammalian systems, analysis of invertebrate glycans presents a challenge in analysis as there exist unfamiliar epitopes and a high degree of structural and isomeric variation between different species—Caenorhabditis elegans is no exception. Simple screening using lectins and antibodies can yield hints regarding which glycan epitopes are present in wild-type and mutant strains, but detailed analysis is necessary for determining more exact glycomic information. Here, our analytical approach is to analyze N- and O-glycans involving “off-line” RP-HPLC MALDI-TOF MS/MS. Enrichment and labeling steps facilitate the analysis of single structures and provide isomeric separation. Thereby, the “simple” worm expresses over 200 N-glycan structures varying depending on culture conditions or the genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

HRP:

horseradish peroxidase

MALDI-TOF MS:

matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry

NPGC:

non-porous graphitized carbon

PA:

pyridylamino

PC:

phosphorylcholine

RP-HPLC:

reversed phase high-pressure liquid chromatography

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Varki A (2011) Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol 3(6):a005462. https://doi.org/10.1101/cshperspect.a005462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  CAS  PubMed  Google Scholar 

  3. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833(11):2430–2437. https://doi.org/10.1016/j.bbamcr.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  4. Schiller B, Hykollari A, Yan S et al (2012) Complicated N-linked glycans in simple organisms. Biol Chem Hoppe Seyler 393:661–673

    CAS  Google Scholar 

  5. Eckmair B, Jin C, Abed-Navandi D et al (2016) Multi-step fractionation and mass spectrometry reveals zwitterionic and anionic modifications of the N- and O-glycans of a marine snail. Mol Cell Proteomics 15:573–597. https://doi.org/10.1074/mcp.M115.051573

    Article  CAS  PubMed  Google Scholar 

  6. Stanton R, Hykollari A, Eckmair B et al (2017) The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta 1861(4):699–714. https://doi.org/10.1016/j.bbagen.2017.01.009

    Article  CAS  PubMed Central  Google Scholar 

  7. Yan S, Vanbeselaere J, Jin C et al (2018) Core richness of N-glycans of Caenorhabditis elegans: a case study on chemical and enzymatic release. Anal Chem 90(1):928–935. https://doi.org/10.1021/acs.analchem.7b03898

    Article  CAS  PubMed  Google Scholar 

  8. Hirabayashi J, Hayama K, Kaji H et al (2002) Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J Biochem (Tokyo) 132(1):103–114. https://doi.org/10.1093/oxfordjournals.jbchem.a003186

    Article  CAS  PubMed  Google Scholar 

  9. Fan X, She YM, Bagshaw RD et al (2005) Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology 15(10):952–964. https://doi.org/10.1093/glycob/cwi075

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu T, Kato Y, Sakai Y et al (2019) N-glycosylation of the Discoidin domain receptor is required for axon regeneration in Caenorhabditis elegans. Genetics 213(2):491–500. https://doi.org/10.1534/genetics.119.302492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rahman M, Ramirez-Suarez NJ, Diaz-Balzac CA et al (2022) Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning. EMBO Rep 23(7):e54163. https://doi.org/10.15252/embr.202154163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts B, Antonopoulos A, Haslam SM et al (2013) Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans. Vet Res 44:111. https://doi.org/10.1186/1297-9716-44-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hykollari A, Malzl D, Yan S et al (2017) Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic Dictyostelium N-glycans. Electrophoresis 38:2175–2183. https://doi.org/10.1002/elps.201700073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paschinger K, Wilson IBH (2016) Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj J 33:273–283. https://doi.org/10.1007/s10719-016-9650-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paschinger K, Wöls F, Yan S et al (2023) N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. J Biol Chem 299:103053. https://doi.org/10.1016/j.jbc.2023.103053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson IBH, Yan S, Jin C et al (2023) Increasing complexity of the N-glycome during Caenorhabditis development. Mol Cell Proteomics 22:100505. https://doi.org/10.1016/j.mcpro.2023.100505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vanbeselaere J, Yan S, Joachim A et al (2018) The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology 28(7):474–481. https://doi.org/10.1093/glycob/cwy045

    Article  CAS  PubMed  Google Scholar 

  18. Paschinger K, Gonzalez-Sapienza GG, Wilson IBH (2012) Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. Int J Parasitol 42(3):279–285. https://doi.org/10.1016/j.ijpara.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  19. Hykollari A, Malzl D, Eckmair B et al (2018) Isomeric separation and recognition of anionic and zwitterionic N-glycans from royal jelly glycoproteins. Mol Cell Proteomics 17(11):2177–2196. https://doi.org/10.1074/mcp.RA117.000462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hykollari A, Malzl D, Wilson IBH et al (2019) Protein-specific analysis of invertebrate glycoproteins. Methods Mol Biol 1871:421–435. https://doi.org/10.1007/978-1-4939-8814-3_24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iskratsch T, Braun A, Paschinger K et al (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 386(2):133–146. https://doi.org/10.1016/j.ab.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  22. Mikolajek H, Kolstoe SE, Pye VE et al (2011) Structural basis of ligand specificity in the human pentraxins, C-reactive protein and serum amyloid P component. J Mol Recognit 24(2):371–377. https://doi.org/10.1002/jmr.1090

    Article  CAS  PubMed  Google Scholar 

  23. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29

    Article  CAS  PubMed  Google Scholar 

  25. Hykollari A, Paschinger K, Eckmair B et al (2017) Analysis of invertebrate and Protist N-Glycans. Methods Mol Biol 1503:167–184. https://doi.org/10.1007/978-1-4939-6493-2_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dragosits M, Pflugl S, Kurz S et al (2014) Recombinant aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Appl Microbiol Biotechnol 98(8):3553–3567. https://doi.org/10.1007/s00253-013-5192-3

    Article  CAS  PubMed  Google Scholar 

  27. Dragosits M, Yan S, Razzazi-Fazeli E et al (2015) Enzymatic properties and subtle differences in the substrate specificity of phylogenetically distinct invertebrate N-glycan processing hexosaminidases. Glycobiology 25(4):448–464. https://doi.org/10.1093/glycob/cwu132

    Article  CAS  PubMed  Google Scholar 

  28. Kameyama A, Thet Tin WW, Toyoda M et al (2019) A practical method of liberating O-linked glycans from glycoproteins using hydroxylamine and an organic superbase. Biochem Biophys Res Commun 513(1):186–192. https://doi.org/10.1016/j.bbrc.2019.03.144

    Article  CAS  PubMed  Google Scholar 

  29. Jiménez-Castells C, Vanbeselaere J, Kohlhuber S et al (2017) Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim Biophys Acta 1861(2):418–430. https://doi.org/10.1016/j.bbagen.2016.10.011

    Article  CAS  Google Scholar 

  30. Purohit S, Li T, Guan W et al (2018) Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 9(1):258. https://doi.org/10.1038/s41467-017-02747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paschinger K, Rendić D, Wilson IBH (2009) Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconj J 26:385–395

    Article  CAS  PubMed  Google Scholar 

  32. Paschinger K, Gonzalez-Sapienza GG, Wilson IBH (2012) Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. Int J Parasitol 42:279–285

    Article  CAS  PubMed  Google Scholar 

  33. Aoki K, Perlman M, Lim JM et al (2007) Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem 282:9127–9142. https://doi.org/10.1074/jbc.M606711200

    Article  CAS  PubMed  Google Scholar 

  34. Miyata S, Sato C, Kumita H et al (2006) Flagellasialin: a novel sulfated α2,9-linked polysialic acid glycoprotein of sea urchin sperm flagella. Glycobiology 16(12):1229–1241. https://doi.org/10.1093/glycob/cwl036

    Article  CAS  PubMed  Google Scholar 

  35. Martini F, Eckmair B, Neupert C et al (2019) Highly modified and immunoactive N-glycans of the canine heartworm. Nat Commun 10:75. https://doi.org/10.1038/s41467-018-07948-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsai PL, Chen SF (2017) A brief review of bioinformatics tools for glycosylation analysis by mass spectrometry. Mass Spectrom 6:S0064. https://doi.org/10.5702/massspectrometry.S0064

    Article  Google Scholar 

  37. York WS, Agravat S, Aoki-Kinoshita KF et al (2014) MIRAGE: the minimum information required for a glycomics experiment. Glycobiology 24(5):402–406. https://doi.org/10.1093/glycob/cwu018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varki A, Cummings RD, Aebi M et al (2015) Symbol nomenclature for graphical representations of Glycans. Glycobiology 25(12):1323–1324. https://doi.org/10.1093/glycob/cwv091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morelle W, Faid V, Chirat F et al (2009) Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol Biol 534:5–21. https://doi.org/10.1007/978-1-59745-022-5_1

    Article  CAS  PubMed  Google Scholar 

  40. Mereiter S, Magalhaes A, Adamczyk B et al (2016) Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4. Data Brief 7:814–833. https://doi.org/10.1016/j.dib.2016.03.022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF; grants P32572 and P29466 to K.P and I.B.H.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain B. H. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paschinger, K., Vanbeselaere, J., Wilson, I.B.H. (2024). Analysis of Caenorhabditis Protein Glycosylation. In: Bradfute, S.B. (eds) Recombinant Glycoproteins. Methods in Molecular Biology, vol 2762. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3666-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3666-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3665-7

  • Online ISBN: 978-1-0716-3666-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics