Skip to main content

dCas12a:Pre-crRNA: A New Tool to Induce mRNA Degradation in Saccharomyces cerevisiae Synthetic Gene Circuits

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

  • 321 Accesses

Abstract

We describe a new way to trigger mRNA degradation in Saccharomyces cerevisiae synthetic gene circuits. Our method demands to modify either the 5′- or the 3′-UTR that flanks a target gene with elements from the pre-crRNA of type V Cas12a proteins and expresses a DNase-deficient Cas12a (dCas12a). dCas12a recognizes and cleaves the pre-crRNA motifs on mRNA sequences. Our tool does not require complex engineering operations and permits an efficient control of protein expression via mRNA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2):121–127. https://doi.org/10.1038/nsmb724

    Article  CAS  PubMed  Google Scholar 

  2. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24(5):545–554. https://doi.org/10.1038/nbt1208

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Wang Z, Tanaka Hall TM (2013) Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. FEBS J 280(16):3755–3767. https://doi.org/10.1111/febs.12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahringer J, Kimble J (1991) Control of the sperm–oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349(6307):346–348. https://doi.org/10.1038/349346a0

    Article  CAS  PubMed  Google Scholar 

  5. Ohrt T, Merkle D, Birkenfeld K, Echeverri CJ, Schwille P (2006) In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res 34(5):1369–1380. https://doi.org/10.1093/nar/gkl001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  7. Ge H, Marchisio MA (2021) Aptamers, riboswitches, and ribozymes in S. cerevisiae synthetic biology. Life (Basel) 11(3). https://doi.org/10.3390/life11030248

  8. Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30(10):1002–1006. https://doi.org/10.1038/nbt.2355

    Article  CAS  PubMed  Google Scholar 

  9. Borchardt EK, Vandoros LA, Huang M, Lackey PE, Marzluff WF, Asokan A (2015) Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA 21(11):1921–1930. https://doi.org/10.1261/rna.051227.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091. https://doi.org/10.1016/j.molp.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  11. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521. https://doi.org/10.1038/nature17945

    Article  CAS  PubMed  Google Scholar 

  12. Yu L, Marchisio MA (2021) Saccharomyces cerevisiae synthetic transcriptional networks harnessing dCas12a and type V-A anti-CRISPR proteins. ACS Synth Biol 10(4):870–883. https://doi.org/10.1021/acssynbio.1c00006

    Article  CAS  PubMed  Google Scholar 

  13. Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16(9):887–893. https://doi.org/10.1038/s41592-019-0508-6

    Article  CAS  PubMed  Google Scholar 

  14. Kempton HR, Goudy LE, Love KS, Qi LS (2020) Multiple input sensing and signal integration using a split Cas12a system. Mol Cell. https://doi.org/10.1016/j.molcel.2020.01.016

  15. Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK (2019) Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 37(3):276–282. https://doi.org/10.1038/s41587-018-0011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu L, Marchisio MA (2023) CRISPR-associated type V proteins as a tool for controlling mRNA stability in S. cerevisiae synthetic gene circuits. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac1270

  17. Chee MK, Haase SB (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 (Bethesda, Md) 2(5):515–526. https://doi.org/10.1534/g3.111.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hahn S, Hoar ET, Guarente L (1985) Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 82(24):8562–8566. https://doi.org/10.1073/pnas.82.24.8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21(8):661–670. https://doi.org/10.1002/yea.1130

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook MRGJ (2018) Molecular cloning, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  21. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96. https://doi.org/10.1016/s0076-6879(02)50957-5

    Article  CAS  PubMed  Google Scholar 

  22. Yu L, Zhang Y, Marchisio MA (2022) Gene digital circuits based on CRISPR-Cas systems and anti-CRISPR proteins. J Vis Exp (188). https://doi.org/10.3791/64539

  23. Wang X, Tian X, Marchisio MA (2023) Logic circuits based on 2A peptide sequences in the yeast Saccharomyces cerevisiae. ACS Synth Biol 12(1):224–237. https://doi.org/10.1021/acssynbio.2c00506

    Article  CAS  PubMed  Google Scholar 

  24. Asemoloye MD, Marchisio MA (2022) Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. Ecotoxicol Environ Saf 241:113768. https://doi.org/10.1016/j.ecoenv.2022.113768

    Article  CAS  PubMed  Google Scholar 

  25. Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. https://doi.org/10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England) 30(10):1473–1475. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the students of the Synthetic Biology lab for their help. We want to thank Xiangyang Zhang and Zhi Li for their assistance in the FACS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Andrea Marchisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, L., Marchisio, M.A. (2024). dCas12a:Pre-crRNA: A New Tool to Induce mRNA Degradation in Saccharomyces cerevisiae Synthetic Gene Circuits. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics