Skip to main content

Quantitative Peptidomics: General Considerations

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2758))

  • 209 Accesses

Abstract

Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chard T (1987) An introduction to radioimmunoassay and related techniques. Elsevier, Amsterdam

    Google Scholar 

  2. Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics. J Chromatogr B Analyt Technol Biomed Life Sci 803:3–16

    Article  CAS  PubMed  Google Scholar 

  3. Fricker LD, Lim J, Pan H, Che FY (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344

    Article  CAS  PubMed  Google Scholar 

  4. Schrader M, Schultz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182

    Article  CAS  Google Scholar 

  5. Che FY, Yuan Q, Kalinina E, Fricker LD (2004) Examination of the rate of peptide biosynthesis in neuroendocrine cell lines using a stable isotopic label and mass spectrometry. J Neurochem 90:585–594

    Article  CAS  PubMed  Google Scholar 

  6. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  7. Kunz TO, Chen J, Megha, Wegener C (2018) Metabolic labeling to quantify drosophila neuropeptides and peptide hormones. Methods Mol Biol 1719:175–185

    Article  CAS  PubMed  Google Scholar 

  8. Southey BR, Lee JE, Zamdborg L, Atkins N Jr, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV (2014) Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal Chem 86:443–452

    Article  CAS  PubMed  Google Scholar 

  9. Mousavi S, Qiu H, Heinis FI, Abid MSR, Andrews MT, Checco JW (2022) Short-term administration of common anesthetics does not dramatically change the endogenous peptide profile in the rat pituitary. ACS Chem Neurosci 13:2888–2896

    Article  CAS  PubMed  Google Scholar 

  10. Wardman JH, Zhang X, Gagnon S, Castro LM, Zhu X, Steiner DF, Day R, Fricker LD (2010) Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J Neurochem 114:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Pan H, Peng B, Steiner DF, Pintar JE, Fricker LD (2010) Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J Neurochem 112:1168–1179

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Che FY, Berezniuk I, Sonmez K, Toll L, Fricker LD (2008) Peptidomics of Cpe(fat/fat) mouse brain regions: implications for neuropeptide processing. J Neurochem 107:1596–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Che FY, Vathy I, Fricker LD (2006) Quantitative peptidomics in mice: effect of cocaine treatment. J Mol Neurosci 28:265–275

    Article  CAS  PubMed  Google Scholar 

  14. Decaillot FM, Che FY, Fricker LD, Devi LA (2006) Peptidomics of Cpefat/fat mouse hypothalamus and striatum: effect of chronic morphine administration. J Mol Neurosci 28:277–284

    Article  CAS  PubMed  Google Scholar 

  15. Lim J, Berezniuk I, Che FY, Parikh R, Biswas R, Pan H, Fricker LD (2006) Altered neuropeptide processing in prefrontal cortex of Cpe<fat/fat> mice: implications for neuropeptide discovery. J Neurochem 96:1169–1181

    Article  CAS  PubMed  Google Scholar 

  16. Fricker LD, Lemos Duarte M, Jeltyi A, Lueptow L, Fakira AK, Tashima AK, Hochgeschwender U, Wetsel WC, Devi LA (2022) Mice heterozygous for a null mutation of CPE show reduced expression of carboxypeptidase e mRNA and enzyme activity but normal physiology, behavior, and levels of neuropeptides. Brain Res 1789:147951

    Article  CAS  PubMed  Google Scholar 

  17. Dasgupta S, Fishman MA, Castro LM, Tashima AK, Ferro ES, Fricker LD (2019) Effect of protein denaturation and enzyme inhibitors on proteasomal-mediated production of peptides in human embryonic kidney cells. Biomol Ther 9:207

    CAS  Google Scholar 

  18. Tashima AK, Fricker LD (2018) Quantitative Peptidomics with five-plex reductive methylation labels. J Am Soc Mass Spectrom 29:866–878

    Article  CAS  PubMed  Google Scholar 

  19. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  PubMed  Google Scholar 

  20. Ranc V, Petruzziello F, Kretz R, Argandona EG, Zhang X, Rainer G (2012) Broad characterization of endogenous peptides in the tree shrew visual system. J Proteome 75:2526–2535

    Article  CAS  Google Scholar 

  21. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  PubMed  Google Scholar 

  22. Bures EJ, Courchesne PL, Douglass J, Chen K, Davis MT et al (2001) Identification of incompletely processed potential carboxypeptidase E substrates from CpEfat/CpEfat mice. Proteomics 1:79–92

    Article  CAS  PubMed  Google Scholar 

  23. Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA et al (2016) Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166:766–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fricker LD (2012) Neuropeptides and other bioactive peptides. Morgan & Claypool Life Sciences, Charleston

    Google Scholar 

  26. Morano C, Zhang X, Fricker LD (2008) Multiple isotopic labels for quantitative mass spectrometry. Anal Chem 80:9298–9309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Che FY, Fricker LD (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom 40:238–249

    Article  CAS  PubMed  Google Scholar 

  28. Che FY, Fricker LD (2002) Quantitation of neuropeptides in Cpe fat/Cpe fat mice using differential isotopic tags and mass spectrometry. Anal Chem 74:3190–3198

    Article  CAS  PubMed  Google Scholar 

  29. Greer T, Li L (2016) Isotopic N,N-Dimethyl Leucine (iDiLeu) for Absolute Quantification of Peptides Using a Standard Curve Approach. Methods Mol Biol 1410:195–206

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Zhang Y, Xiang F, Zhang Z, Li L (2010) Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics. J Chromatogr A 1217:4463–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiang F, Ye H, Chen RB, Fu Q, Li LJ (2010) N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem 82:2817–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu L, Li H, Li X, Chen Y, Zhang Q, Cheng Z, Fan Y, Song G, Qian L (2017) Peptidomic analysis of cultured cardiomyocytes exposed to acute ischemic-hypoxia. Cell Physiol Biochem 41:358–368

    Article  CAS  PubMed  Google Scholar 

  33. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  34. Fricker LD (2010) Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Mol Biosyst 6:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan H, Che FY, Peng B, Steiner DF, Pintar JE, Fricker LD (2006) The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study. J Neurochem 98:1763–1777

    Article  CAS  PubMed  Google Scholar 

  36. Che FY, Biswas R, Fricker LD (2005) Relative quantitation of peptides in wild type and Cpe<fat/fat> mouse pituitary using stable isotopic tags and mass spectrometry. J Mass Spectrom 40:227–237

    Article  CAS  PubMed  Google Scholar 

  37. Che FY, Yuan Q, Kalinina E, Fricker LD (2005) Peptidomics of Cpe<fat/fat> mouse hypothalamus: effect of food deprivation and exercise on peptide levels. J Biol Chem 280:4451–4461

    Article  CAS  PubMed  Google Scholar 

  38. Gomes I, Bobeck EN, Margolis EB, Gupta A, Sierra S et al (2016) Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Sci Signal 9:ra43

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lyons PJ, Fricker LD (2010) Substrate specificity of human carboxypeptidase A6. J Biol Chem 285:38234–38242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanco S, Zhang X, Morano C, Aviles FX, Lorenzo J, Fricker LD (2010) Human carboxypeptidase A4: characterization of the substrate specificity and implications for a role in extracellular peptide processing. J Biol Chem 285:18385–18396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berti DA, Morano C, Russo LC, Castro LM, Cunha FM et al (2009) Analysis of intracellular substrates and products of thimet oligopeptidase (EC 3.4.24.15) in human embryonic kidney 293 cells. J Biol Chem 284:14105–14116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Che FY, Zhang X, Berezniuk I, Callaway M, Lim J, Fricker LD (2007) Optimization of neuropeptide extraction from the mouse hypothalamus. J Proteome Res 6:4667–4676

    Article  CAS  PubMed  Google Scholar 

  43. Dasgupta S, Yang C, Castro LM, Tashima AK, Ferro ES, Moir RD, Willis IM, Fricker LD (2016) Analysis of the yeast Peptidome and comparison with the human peptidome. PLoS One 11:e0163312

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dasgupta S, Fishman MA, Mahallati H, Castro LM, Tashima AK, Ferro ES, Fricker LD (2015) Reduced levels of proteasome products in a mouse striatal cell model of Huntington’s disease. PLoS One 10:e0145333

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dasgupta S, Castro LM, Dulman R, Yang C, Schmidt M, Ferro ES, Fricker LD (2014) Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells. PLoS One 9:e103604

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berezniuk I, Sironi JJ, Wardman J, Pasek RC, Berbari NF, Yoder BK, Fricker LD (2013) Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 8:e60981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelman JS, Dasgupta S, Berezniuk I, Fricker LD (2013) Analysis of peptides secreted from cultured mouse brain tissue. Biochim Biophys Acta 1834:2408–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gelman JS, Sironi J, Berezniuk I, Dasgupta S, Castro LM, Gozzo FC, Ferro ES, Fricker LD (2013) Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One 8:e53263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fricker LD, Gelman JS, Castro LM, Gozzo FC, Ferro ES (2012) Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J Proteome Res 11:1981–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gelman JS, Sironi J, Castro LM, Ferro ES, Fricker LD (2011) Peptidomic analysis of human cell lines. J Proteome Res 10:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berezniuk I, Sironi J, Callaway MB, Castro LM, Hirata IY, Ferro ES, Fricker LD (2010) CCP1/Nna1 functions in protein turnover in mouse brain: implications for cell death in Purkinje cell degeneration mice. FASEB J 24:1813–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gelman JS, Sironi J, Castro LM, Ferro ES, Fricker LD (2010) Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem 113:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74:3662–3669

    Article  CAS  PubMed  Google Scholar 

  54. Boonen K, De Haes W, Van Houtven J, Verdonck R, Baggerman G, Valkenborg D, Schoofs L (2018) Quantitative Peptidomics with isotopic and isobaric tags. Methods Mol Biol 1719:141–159

    Article  CAS  PubMed  Google Scholar 

  55. Fricker LD (2015) Limitations of mass spectrometry-based Peptidomic approaches. J Am Soc Mass Spectrom 26:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494

    Article  CAS  PubMed  Google Scholar 

  57. Dasgupta S, Castro LM, Tashima AK, Fricker L (2018) Quantitative Peptidomics using reductive methylation of amines. Methods Mol Biol 1719:161–174

    Article  CAS  PubMed  Google Scholar 

  58. Tolonen AC, Haas W (2014) Quantitative proteomics using reductive dimethylation for stable isotope labeling. J Vis Exp. https://doi.org/10.3791/51416

  59. Yan X, Sun L, Dovichi NJ, Champion MM (2020) Minimal deuterium isotope effects in quantitation of dimethyl-labeled complex proteomes analyzed with capillary zone electrophoresis/mass spectrometry. Electrophoresis 41:1374–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  61. Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Liang D, Cheng Q, Cao L, Wu Y et al (2017) Peptidomic analysis of fetal heart tissue for identification of endogenous peptides involved in tetralogy of Fallot. DNA Cell Biol 36:451

    Article  CAS  PubMed  Google Scholar 

  63. DeLaney K, Buchberger A, Li L (2018) Identification, quantitation, and imaging of the crustacean peptidome. Methods Mol Biol 1719:247–269

    Article  CAS  PubMed  Google Scholar 

  64. Frost DC, Greer T, Xiang F, Liang Z, Li L (2015) Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics. Rapid Commun Mass Spectrom 29:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frost DC, Greer T, Li L (2015) High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics. Anal Chem 87:1646–1654

    Article  CAS  PubMed  Google Scholar 

  66. Hui L, Xiang F, Zhang Y, Li L (2012) Mass spectrometric elucidation of the neuropeptidome of a crustacean neuroendocrine organ. Peptides 36:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sturm RM, Lietz CB, Li L (2014) Improved isobaric tandem mass tag quantification by ion mobility mass spectrometry. Rapid Commun Mass Spectrom 28:1051–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greer T, Hao L, Nechyporenko A, Lee S, Vezina CM et al (2015) Custom 4-Plex DiLeu isobaric labels enable relative quantification of urinary proteins in men with lower urinary tract symptoms (LUTS). PLoS One 10:e0135415

    Article  PubMed  PubMed Central  Google Scholar 

  69. Greer T, Lietz CB, Xiang F, Li L (2015) Novel isotopic N,N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach. J Am Soc Mass Spectrom 26:107–119

    Article  CAS  PubMed  Google Scholar 

  70. Azkargorta M, Escobes I, Iloro I, Elortza F (2018) Mass spectrometric identification of endogenous peptides. Methods Mol Biol 1719:59–70

    Article  CAS  PubMed  Google Scholar 

  71. Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV (2018) Bioinformatics for prohormone and neuropeptide discovery. Methods Mol Biol 1719:71–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lemeer S, Hahne H, Pachl F, Kuster B (2012) Software tools for MS-based quantitative proteomics: a brief overview. Methods Mol Biol 893:489–499

    Article  CAS  PubMed  Google Scholar 

  73. Wardman J, Fricker LD (2011) Quantitative peptidomics of mice lacking peptide-processing enzymes. Methods Mol Biol 768:307–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Che FY, Yan L, Li H, Mzhavia N, Devi L, Fricker LD (2001) Identification of peptides from brain and pituitary of Cpe fat/Cpe fat mice. Proc Natl Acad Sci U S A 98:9971–9976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Jonathan Sweedler, Lingjun Li, and Michael Schrader for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd D. Fricker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fricker, L.D. (2024). Quantitative Peptidomics: General Considerations. In: Schrader, M., Fricker, L.D. (eds) Peptidomics. Methods in Molecular Biology, vol 2758. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3646-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3646-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3645-9

  • Online ISBN: 978-1-0716-3646-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics