Skip to main content

Multiplex Immunofluorescence Staining Protocol for the Dual Imaging of Hypoxia-Inducible Factors 1 and 2 on Formalin-Fixed Paraffin-Embedded Samples

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2755))

  • 310 Accesses

Abstract

Hypoxia is a common condition in rapidly proliferating tumors and occurs when oxygen delivery to the tissue is scarce. It is a prevalent feature in ~90% of solid tumors. The family of HIF (hypoxia-inducible factor) proteins—HIF1α and HIF2α—are the main transcription factors that regulate the response to hypoxia. These transcription factors regulate numerous downstream gene targets that promote the aggressiveness of tumors and therefore have been linked to worse prognosis in patients. This makes them a potential biomarker to be tested in the clinical setting to predict patient outcomes. However, HIFs have been notoriously challenging to immunolabel, in part due to their fast turnover under normal oxygen conditions. In this work, we developed a multiplexed immunofluorescence (mIF) staining protocol for the simultaneous detection of HIF1α and HIF2α in the same formalin-fixed paraffin-embedded (FFPE) tissue section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim JW, Gao P, Dang CV (2007) Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 26(2):291–298. https://doi.org/10.1007/s10555-007-9060-4

    Article  CAS  PubMed  Google Scholar 

  2. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1235. https://doi.org/10.1089/ars.2007.1628

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Mayer A, Briest S et al (2003) Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res 63(22):7634–7637

    CAS  PubMed  Google Scholar 

  4. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. https://doi.org/10.1016/j.molcel.2010.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greer SN, Metcalf JL, Wang Y et al (2012) The updated biology of hypoxia-inducible factor. EMBO J 31(11):2448–2460. https://doi.org/10.1038/emboj.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647. https://doi.org/10.1074/jbc.272.36.22642

    Article  CAS  PubMed  Google Scholar 

  7. O'Rourke JF, Tian YM, Ratcliffe PJ et al (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274(4):2060–2071. https://doi.org/10.1074/jbc.274.4.2060

    Article  CAS  PubMed  Google Scholar 

  8. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. https://doi.org/10.1126/science.1059796

    Article  CAS  PubMed  Google Scholar 

  9. Jiang B, Rue E, Wang G et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271(30):17771–17778. https://doi.org/10.1074/jbc.271.30.17771

    Article  CAS  PubMed  Google Scholar 

  10. Ema M, Taya S, Yokotani N et al (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94(9):4273–4278. https://doi.org/10.1073/pnas.94.9.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dengler V, Galbraith M, Espinosa J (2013) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15. https://doi.org/10.3109/10409238.2013.838205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye I, Fertig E, DiGiacomo J et al (2018) Molecular portrait of hypoxia in breast cancer: a prognostic signature and novel HIF-regulated genes. Mol Cancer Res 16(12):1889–1901. https://doi.org/10.1158/1541-7786.mcr-18-0345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu MZ, Tsai YP, Yang MH et al (2011) Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 43(5):811–822. https://doi.org/10.1016/j.molcel.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Das B, Tsuchida R, Malkin D et al (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26(7):1818–1830. https://doi.org/10.1634/stemcells.2007-0724

    Article  PubMed  Google Scholar 

  15. Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11(3):293–299. https://doi.org/10.1016/s0959-437x(00)00193-3

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Imanaka N, Chen J et al (2010) Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 102(2):351–360. https://doi.org/10.1038/sj.bjc.6605486

    Article  CAS  PubMed  Google Scholar 

  17. Ju JA, Godet I, Ye IC et al (2017) Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res 15(6):723–734. https://doi.org/10.1158/1541-7786.MCR-16-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Höckel M, Vorndran B, Schlenger K et al (1993) Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51(2):141–149. https://doi.org/10.1006/gyno.1993.1262

    Article  PubMed  Google Scholar 

  19. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53(5):1192–1202. https://doi.org/10.1016/s0360-3016(02)02848-1

    Article  CAS  PubMed  Google Scholar 

  20. Godet I, Mamo M, Thurnheer A et al (2021) Post-hypoxic cells promote metastatic recurrence after chemotherapy treatment in TNBC. Cancers 13(21):5509. https://doi.org/10.3390/cancers13215509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9(11):1623–1636. https://doi.org/10.2217/fon.13.92

    Article  CAS  PubMed  Google Scholar 

  22. Hu CJ, Wang LY, Chodosh LA et al (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374. https://doi.org/10.1128/MCB.23.24.9361-9374.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu CJ, Iyer S, Sataur A et al (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 26(9):3514–3526. https://doi.org/10.1128/MCB.26.9.3514-3526.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holmquist-Mengelbier L, Fredlund E, Löfstedt T et al (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10(5):413–423. https://doi.org/10.1016/j.ccr.2006.08.026

    Article  CAS  PubMed  Google Scholar 

  25. Seagroves TN, Ryan HE, Lu H et al (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444. https://doi.org/10.1128/MCB.21.10.3436-3444.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Befani C, Liakos P (2018) The role of hypoxia-inducible factor-2 alpha in angiogenesis. J Cell Physiol 233(12):9087–9098. https://doi.org/10.1002/jcp.26805

    Article  CAS  PubMed  Google Scholar 

  27. Rademakers SE, Lok J, van der Kogel AJ et al (2011) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167. https://doi.org/10.1186/1471-2407-11-167

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wiesener MS, Jürgensen JS, Rosenberger C et al (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17(2):271–273. https://doi.org/10.1096/fj.02-0445fje

    Article  CAS  PubMed  Google Scholar 

  29. Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534. https://doi.org/10.1016/j.tibs.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  30. Laughner E, Taghavi P, Chiles K et al (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montani M, Heinimann K, von Teichman A et al (2010) VHL-gene deletion in single renal tubular epithelial cells and renal tubular cysts: further evidence for a cyst-dependent progression pathway of clear cell renal carcinoma in von Hippel-Lindau disease. Am J Surg Pathol 34(6):806–815. https://doi.org/10.1097/PAS.0b013e3181ddf54d

    Article  PubMed  Google Scholar 

  32. Mandriota SJ, Turner KJ, Davies DR et al (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1(5):459–468. https://doi.org/10.1016/s1535-6108(02)00071-5

    Article  CAS  PubMed  Google Scholar 

  33. Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  34. Zagzag D, Zhong H, Scalzitti JM et al (2000) Expression of hypoxia-inducible factor 1α in brain tumors. Cancer 88(11):2606–2618. https://doi.org/10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  35. Helczynska K, Larsson AM, Holmquist Mengelbier L et al (2008) Hypoxia-inducible factor-2α correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res 68(22):9212–9220. https://doi.org/10.1158/0008-5472.can-08-1135

    Article  CAS  PubMed  Google Scholar 

  36. Li F, Lee KE, Simon MC (2018) Detection of hypoxia and HIF in paraffin-embedded tumor tissues. In: Huang J (ed) Hypoxia, Methods in molecular biology, vol 1742. Humana Press, New York, pp 277–282. https://doi.org/10.1007/978-1-4939-7665-2_24

    Chapter  Google Scholar 

  37. Vaughan MM, Toth K, Chintala S et al (2010) Double immunohistochemical staining method for HIF-1α and its regulators PHD2 and PHD3 in formalin-fixed paraffin-embedded tissues. Appl Immunohistochem Mol Morphol 18(4):375–381. https://doi.org/10.1097/pai.0b013e3181d6bd59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the Gilkes lab has been supported by the National Cancer Institute, the Jayne Koskinas Ted Giovanis Foundation for Health and Policy, Cindy Rosencrans Fund for Metastatic Triple-Negative Breast Cancer, and the Emerson Collective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele M. Gilkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oza, H.H., Gilkes, D.M. (2024). Multiplex Immunofluorescence Staining Protocol for the Dual Imaging of Hypoxia-Inducible Factors 1 and 2 on Formalin-Fixed Paraffin-Embedded Samples. In: Gilkes, D.M. (eds) Hypoxia. Methods in Molecular Biology, vol 2755. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3633-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3633-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3632-9

  • Online ISBN: 978-1-0716-3633-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics