Skip to main content

Rapid Screening of CAR T Cell Functional Improvement Strategies by Highly Multiplexed Single-Cell Secretomics

  • Protocol
  • First Online:
Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2748))

  • 898 Accesses

Abstract

The functional fitness of CAR T cells plays a crucial role in determining their clinical efficacy. Several strategies are being explored to increase cellular fitness, but screening these approaches in vivo is expensive and time-consuming, limiting the number of strategies that can be tested at one time. The presence of polyfunctional CAR T cells has emerged as a critical parameter correlating with clinical responses. However, even sophisticated multiplexed secretomic assays often fail to detect differences in cytokine release due to the functional heterogeneity of CAR T cell products. Here, we describe a highly multiplexed single-cell secretomic assay based on the IsoLight platform to rapidly evaluate the impact of new pharmacologic or gene-engineering approaches aiming at improving CAR T cell function. As a key study, we focus on CD19-specific CAR CD8+ T cells modulated by miR-155 overexpression, but the protocol can be applied to characterize other functional immune cell modulation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finck AV, Blanchard T, Roselle CP et al (2022) Engineered cellular immunotherapies in cancer and beyond. Nat Med 28(4):678–689. https://doi.org/10.1038/s41591-022-01765-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. https://doi.org/10.1126/science.aaa4967

    Article  PubMed  PubMed Central  Google Scholar 

  3. Locke FL, Miklos DB, Jacobson CA et al (2021) Axicabtagene Ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med 386(7):640–654. https://doi.org/10.1056/NEJMoa2116133

    Article  PubMed  Google Scholar 

  4. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  PubMed  PubMed Central  Google Scholar 

  5. Majzner RG, Mackall CL (2018) Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8(10):1219–1226. https://doi.org/10.1158/2159-8290.Cd-18-0442

    Article  PubMed  Google Scholar 

  6. Fuca G, Reppel L, Landoni E et al (2020) Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin Cancer Res 26(11):2444–2451. https://doi.org/10.1158/1078-0432.CCR-19-1835

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scharping NE, Menk AV, Moreci RS et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive Intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderson KG, Stromnes IM, Greenberg PD (2017) Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31(3):311–325. https://doi.org/10.1016/j.ccell.2017.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684. https://doi.org/10.1038/nrc3322

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gattinoni L, Speiser DE, Lichterfeld M et al (2017) T memory stem cells in health and disease. Nat Med 23(1):18–27. https://doi.org/10.1038/nm.4241

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gattinoni L, Zhong XS, Palmer DC et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813. https://doi.org/10.1038/nm.1982

    Article  PubMed Central  Google Scholar 

  12. Sabatino M, Hu J, Sommariva M et al (2016) Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128(4):519–528. https://doi.org/10.1182/blood-2015-11-683847

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arcangeli S, Bove C, Mezzanotte C et al (2022) CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J Clin Invest 132(12). https://doi.org/10.1172/JCI150807

  14. Gattinoni L, Lugli E, Ji Y et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. https://doi.org/10.1038/nm.2446

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fraietta JA, Lacey SF, Orlando EJ et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24(5):563–571. https://doi.org/10.1038/s41591-018-0010-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deng Q, Han G, Puebla-Osorio N et al (2020) Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med 26(12):1878–1887. https://doi.org/10.1038/s41591-020-1061-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bai Z, Woodhouse S, Zhao Z et al (2022) Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv 8(23):eabj2820. https://doi.org/10.1126/sciadv.abj2820

    Article  PubMed  PubMed Central  Google Scholar 

  18. D'Angelo SP, Melchiori L, Merchant MS et al (2018) Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov 8(8):944–957. https://doi.org/10.1158/2159-8290.Cd-17-1417

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krishna S, Lowery FJ, Copeland AR et al (2020) Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370(6522):1328–1334. https://doi.org/10.1126/science.abb9847

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lugli E, Dominguez MH, Gattinoni L et al (2013) Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123(2):594–599. https://doi.org/10.1172/JCI66327

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oliveira G, Ruggiero E, Stanghellini MTL et al (2015) Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci Transl Med 7(317):317ra198–317ra198. https://doi.org/10.1126/scitranslmed.aac8265

    Article  PubMed  Google Scholar 

  22. Fuertes Marraco SA, Soneson C, Cagnon L et al (2015) Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci Transl Med 7(282):282ra248. https://doi.org/10.1126/scitranslmed.aaa3700

    Article  Google Scholar 

  23. Sukumar M, Liu J, Ji Y et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Investigat 123(10):4479–4488. https://doi.org/10.1172/jci69589

    Article  Google Scholar 

  24. Geiger R, Rieckmann JC, Wolf T et al (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829–842.e813. https://doi.org/10.1016/j.cell.2016.09.031

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hermans D, Gautam S, Garcia-Canaveras JC et al (2020) Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8(+) T cell stemness and antitumor immunity. Proc Natl Acad Sci U S A 117(11):6047–6055. https://doi.org/10.1073/pnas.1920413117

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wenes M, Jaccard A, Wyss T et al (2022) The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab 34(5):731–746.e739. https://doi.org/10.1016/j.cmet.2022.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klebanoff CA, Crompton JG, Leonardi AJ et al (2017) Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2(23). https://doi.org/10.1172/jci.insight.95103

  28. Kondo T, Morita R, Okuzono Y et al (2017) Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat Commun 8:15338. https://doi.org/10.1038/ncomms15338

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verma V, Jafarzadeh N, Boi S et al (2021) MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat Immunol 22(1):53–66. https://doi.org/10.1038/s41590-020-00818-9

    Article  PubMed  Google Scholar 

  30. Dudda JC, Salaun B, Ji Y et al (2013) MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 38(4):742–753. https://doi.org/10.1016/j.immuni.2012.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ji Y, Wrzesinski C, Yu Z et al (2015) miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic gammac cytokines. Proc Natl Acad Sci U S A 112(2):476–481. https://doi.org/10.1073/pnas.1422916112

    Article  PubMed  Google Scholar 

  32. Zhang M, Zhao Z, Pritykin Y et al (2021) Ectopic activation of the miR-200c-EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Sci Transl Med 13(611):eabg4328. https://doi.org/10.1126/scitranslmed.abg4328

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gautam S, Fioravanti J, Zhu W et al (2019) The transcription factor c-Myb regulates CD8(+) T cell stemness and antitumor immunity. Nat Immunol 20(3):337–349. https://doi.org/10.1038/s41590-018-0311-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lynn RC, Weber EW, Sotillo E et al (2019) C-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576(7786):293–300. https://doi.org/10.1038/s41586-019-1805-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Seo H, González-Avalos E, Zhang W et al (2021) BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat Immunol 22(8):983–995. https://doi.org/10.1038/s41590-021-00964-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ji Y, Fioravanti J, Zhu W et al (2019) miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8(+) T cell fate. Nat Commun 10(1):2157. https://doi.org/10.1038/s41467-019-09882-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prinzing B, Zebley CC, Petersen CT et al (2021) Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med 13(620):eabh0272. https://doi.org/10.1126/scitranslmed.abh0272

    Article  PubMed  PubMed Central  Google Scholar 

  38. Belk JA, Daniel B, Satpathy AT (2022) Epigenetic regulation of T cell exhaustion. Nat Immunol 23(6):848–860. https://doi.org/10.1038/s41590-022-01224-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rossi J, Paczkowski P, Shen Y-W et al (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814. https://doi.org/10.1182/blood-2018-01-828343

    Article  PubMed Central  Google Scholar 

  40. Kochenderfer JN, Feldman SA, Zhao Y et al (2009) Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 32(7):689–702. https://doi.org/10.1097/CJI.0b013e3181ac6138

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicting Interests

L.G. has consulting agreements with Lyell Immunopharma, Instil Bio, and Advaxis. L.G. is on the scientific advisory board of Poseida Therapeutics and Kiromic and a stockholder of Poseida Therapeutics. E.H. and J.Z. are employed by and have equity ownership in IsoPlexis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dragana Slavkovic-Lukic or Luca Gattinoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Slavkovic-Lukic, D., Fioravanti, J., Martín-Santos, A., Han, E., Zhou, J., Gattinoni, L. (2024). Rapid Screening of CAR T Cell Functional Improvement Strategies by Highly Multiplexed Single-Cell Secretomics. In: Siciliano, V., Ceroni, F. (eds) Cancer Immunotherapy. Methods in Molecular Biology, vol 2748. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3593-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3593-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3592-6

  • Online ISBN: 978-1-0716-3593-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics