Skip to main content

Preparation of Oxidized and Reduced PTP4A1 for Structural and Functional Studies

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2743))

  • 266 Accesses

Abstract

The formation of a reversible disulfide bond between the catalytic cysteine and a spatially neighboring cysteine (backdoor) in protein tyrosine phosphatases (PTPs) serves as a critical regulatory mechanism for maintaining the activity of protein tyrosine phosphatases. The failure of such protection results in the formation of irreversibly oxidized cysteines into sulfonic acid in a highly oxidative cellular environment in the presence of free radicals. Hence, it is important to develop methods to interconvert PTPs into reduced and oxidized forms to understand their catalytic function in vitro. Protein tyrosine phosphatase 4A type 1 (PTP4A1), a dual-specificity phosphatase, is catalytically active in the reduced form. Unexpectedly, also its oxidized form performs a key biological function in systemic sclerosis (SSc) by forming a kinasephosphatase complex with Src kinases. Thus, we developed simple and efficient protocols for producing oxidized and reduced PTP4A1 to elucidate their biological function, which can be extended to study other protein tyrosine phosphatases and other recombinantly produced proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70:375–387

    Article  CAS  PubMed  Google Scholar 

  2. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab TEM 26:676–687

    Article  CAS  PubMed  Google Scholar 

  3. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  CAS  PubMed  Google Scholar 

  4. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  5. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  PubMed  Google Scholar 

  6. Netto LES, Machado LESF (2022) Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 289:5480–5504

    Article  CAS  PubMed  Google Scholar 

  7. Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G, Ramponi G (1998) The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem 273:32554–32560

    Article  CAS  PubMed  Google Scholar 

  8. Lee S-R, Yang K-S, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    Article  CAS  PubMed  Google Scholar 

  9. Savitsky PA, Finkel T (2002) Redox regulation of Cdc25C. J Biol Chem 277:20535–20540

    Article  CAS  PubMed  Google Scholar 

  10. Zhang R, Kumar GS, Hansen U, Zoccheddu M, Sacchetti C, Holmes ZJ, Lee MC, Beckmann D, Wen Y, Mikulski Z, Yang S, Santelli E, Page R, Boin F, Peti W, Bottini N (2022) Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex. JCI Insight 7:e155761

    Article  PubMed  PubMed Central  Google Scholar 

  11. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet Lond Engl 390:1685–1699

    Article  Google Scholar 

  12. Gabrielli A, Svegliati S, Moroncini G, Amico D (2012) New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 6:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piera-Velazquez S, Makul A, Jiménez SA (2015) Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor β. Arthritis Rheumatol Hoboken NJ 67:2749–2758

    Article  Google Scholar 

  14. Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain JR, Jin LL, Harris IS, Mori J, Mak TW, Senis YA, Östman A, Moran MF, Neel BG (2011) Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 146:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sacchetti C, Bai Y, Stanford SM, Di Benedetto P, Cipriani P, Santelli E, Piera-Velazquez S, Chernitskiy V, Kiosses WB, Ceponis A, Kaestner KH, Boin F, Jimenez SA, Giacomelli R, Zhang Z-Y, Bottini N (2017) PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun 8:1060

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gulerez I, Funato Y, Wu H, Yang M, Kozlov G, Miki H, Gehring K (2016) Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep 17:1890–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I (2004) Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J Biol Chem 279:11882–11889

    Article  CAS  PubMed  Google Scholar 

  18. Sun J-P, Wang W-Q, Yang H, Liu S, Liang F, Fedorov AA, Almo SC, Zhang Z-Y (2005) Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry 44:12009–12021

    Article  CAS  PubMed  Google Scholar 

  19. Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Senthil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, G.S. (2024). Preparation of Oxidized and Reduced PTP4A1 for Structural and Functional Studies. In: Thévenin, D., P. Müller, J. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 2743. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3569-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3569-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3568-1

  • Online ISBN: 978-1-0716-3569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics