Skip to main content

The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages

  • Protocol
  • First Online:
Bacteriophages

Abstract

The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karimi M, Mirshekari H, Basri SMM, Bahrami S, Moghoofei M, Hamblin MR (2016) Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 106:45–62

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fortier L-C, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4(5):354–365

    PubMed  PubMed Central  Google Scholar 

  3. Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53(1):9–18

    CAS  PubMed  Google Scholar 

  4. Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG (2022) The use of bacteriophages in biotechnology and recent insights into proteomics. Antibiotics 11(5):653

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sioud M (2019) Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Biotechnol 61(4):286–303

    CAS  PubMed  Google Scholar 

  6. Manivannan AC, Dhandapani R, Velmurugan P, Thangavelu S, Paramasivam R, Ragunathan L, Saravanan M (2022) Phage in cancer treatment–Biology of therapeutic phage and screening of tumor targeting peptide. Expert Opin Drug Deliv 19(7):873–882

    CAS  PubMed  Google Scholar 

  7. Smit MJ, Sander AF, Ariaans M, Fougeroux C, Heinzel C, Fendel R, Esen M, Kremsner PG, Ter Heine R, Wertheim HF, Idorn M, Paludan SR, Underwood AP, Binderup A, Ramirez S, Bukh J, Soegaard M, Erdogan SM, Gustavsson T, Clemmensen S, Theander TG, Salanti A, Hamborg M, de Jongh WA, McCall MBB, Nielsen MA, Mordmüller BG (2023) First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. Lancet Microbe 4(3):e140–e148. https://doi.org/10.1016/s2666-5247(22)00337-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhai L, Yadav R, Kunda NK, Anderson D, Bruckner E, Miller EK, Basu R, Muttil P, Tumban E (2019) Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antiviral Res 166:56–65. https://doi.org/10.1016/j.antiviral.2019.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM, Graf A (2017) Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement (N Y) 3(1):10–22. https://doi.org/10.1016/j.trci.2016.12.003

    Article  PubMed  Google Scholar 

  10. Pinto AM, Dias M, Pastrana LM, Cerqueira MA, Sillankorva S (2023) Natural biopolymer scaffolds for bacteriophage delivery in the medical field. Adv Biomed Poly Composit:769–793

    Google Scholar 

  11. Yang T, Chen Y, Xu Y, Liu X, Yang M, Mao C (2023) Viruses as biomaterials. Mater Sci Eng R: Report 153:100715

    Google Scholar 

  12. Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F, Group PHs (2022) Paving the way for phage therapy using novel drug delivery approaches. J Control Release 347:414–424

    CAS  PubMed  Google Scholar 

  13. Ghosh S, Chakraborty T (n.d.) Bacteriophage mediated modulation of gut microbiome responsible for colorectal cancer

    Google Scholar 

  14. Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25(2):219–232

    CAS  PubMed  Google Scholar 

  15. Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S, Chan H-K (2018) Phage therapy for respiratory infections. Adv Drug Deliv Rev 133:76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatfull GF, Dedrick RM, Schooley RT (2022) Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med 73:197–211

    CAS  PubMed  Google Scholar 

  17. Gamachu SB, Debalo M (2022) Review of bacteriophage and its applications. Int J Vet Sci Res 8(3):133–147

    Google Scholar 

  18. Abdelsattar A, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A (2022) Bacteriophages: from isolation to application. Curr Pharm Biotechnol 23(3):337–360

    CAS  PubMed  Google Scholar 

  19. Lammens E-M, Nikel PI, Lavigne R (2020) Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 11(1):5294

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Murphy KC (2012) Phage recombinases and their applications. Adv Virus Res 83:367–414

    CAS  PubMed  Google Scholar 

  21. Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, Jones MA, Kunjapur AM, Nyerges A, Pal C (2021) Recombineering and MAGE. Nat Rev Method Primers 1(1):7

    CAS  Google Scholar 

  22. Inniss MC, Bandara K, Jusiak B, Lu TK, Weiss R, Wroblewska L, Zhang L (2017) A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol Bioeng 114(8):1837–1846

    CAS  PubMed  Google Scholar 

  23. Gibb B, Hyman P, Schneider CL (2021) The many applications of engineered bacteriophages—An overview. Pharmaceuticals 14(7):634

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Czapar AE, Steinmetz NF (2017) Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Curr Opin Chem Biol 38:108–116

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakhshinejad B, Sadeghizadeh M (2014) Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv 11(10):1561–1574

    CAS  PubMed  Google Scholar 

  26. Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L (2012) Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J 279(7):1198–1208

    CAS  PubMed  Google Scholar 

  27. Kaur T, Nafissi N, Wasfi O, Sheldon K, Wettig S, Slavcev R (2012) Immunocompatibility of bacteriophages as nanomedicines. J Nanotechnol

    Google Scholar 

  28. Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA (2018) Narayan D (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 1:60–66. https://doi.org/10.1093/emph/eoy005

    Article  Google Scholar 

  29. Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR (2016) Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 106(Pt A):45–62. https://doi.org/10.1016/j.addr.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659. https://doi.org/10.1128/aac.45.3.649-659.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14(5):524–531

    PubMed  Google Scholar 

  32. Paczesny J, Bielec K (2020) Application of Bacteriophages in Nanotechnology. Nanomaterials (Basel) 10(10). https://doi.org/10.3390/nano10101944

  33. Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L (2022) Bacteriophages as solid tumor theragnostic agents. Int J Mol Sci 23(1):402

    CAS  Google Scholar 

  34. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bedi D, Gillespie JW, Petrenko VA Jr, Ebner A, Leitner M, Hinterdorfer P, Petrenko VA (2013) Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol Pharm 10(2):551–559

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Obeid MA, Aljabali AAA, Alshaer W, Charbe NB, Chellappan DK, Dua K, Satija S, Tambuwala MM (2021) Targeting siRNAs in cancer drug delivery. In: Advanced drug delivery systems in the management of cancer. Elsevier, pp 447–460

    Google Scholar 

  37. Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S (2021) Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol 87(5):e01979–e01920

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu R-M, Chen M-S, Chang D-K, Chiu C-Y, Lin W-C, Yan S-L, Wang Y-P, Kuo Y-S, Yeh C-Y, Lo A (2013) Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging. PloS One 8(6):e66128

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen Y, Wang J, Li Y, Yang C-T, Zhou X (2023) Modified bacteriophage for tumor detection and targeted therapy. Nanomaterials 13(4):665

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Penchovsky R, Traykovska M (2015) Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Discovery 10(6):631–650

    CAS  Google Scholar 

  41. Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27

    CAS  PubMed  Google Scholar 

  42. Chung YH, Cai H, Steinmetz NF (2020) Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 156:214–235. https://doi.org/10.1016/j.addr.2020.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L (2021) Bacteriophages as solid tumor theragnostic agents. Int J Mol Sci 23(1). https://doi.org/10.3390/ijms23010402

  44. Gibb B, Hyman P, Schneider CL (2021) The many applications of engineered bacteriophages—an overview. Pharmaceuticals (Basel) 14(7). https://doi.org/10.3390/ph14070634

  45. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A (2020) Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob 19(1):45. https://doi.org/10.1186/s12941-020-00389-5

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nanotechnol Rev 3. https://doi.org/10.3402/nano.v3i0.18496

  47. Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, Bloomfield J, Fittall M, Grigoriadis A, Figini M, Canevari S, Spicer JF, Tutt AN, Karagiannis SN (2016) Targeting folate receptor alpha for cancer treatment. Oncotarget 7(32):52553–52574. https://doi.org/10.18632/oncotarget.9651

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scribano D, Sarshar M, Prezioso C, Lucarelli M, Angeloni A, Zagaglia C, Palamara AT, Ambrosi C (2020) d-mannose treatment neither affects uropathogenic Escherichia coli properties nor induces stable FimH modifications. Molecules 25(2). https://doi.org/10.3390/molecules25020316

  49. Sanya DRA, Onésime D, Vizzarro G, Jacquier N (2023) Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol 23(1):86. https://doi.org/10.1186/s12866-023-02832-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC (2019) Phage display in the quest for new selective recognition elements for biosensors. ACS Omega 4(7):11569–11580. https://doi.org/10.1021/acsomega.9b01206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257. https://doi.org/10.1080/10717544.2018.1474964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N (2021) Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 20(1):55. https://doi.org/10.1186/s12943-021-01346-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ochs HD, Davis SD, Wedgwood RJ (1971) Immunologic responses to bacteriophage ϕX 174 in immunodeficiency diseases. J Clin Invest 50(12):2559–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hess KL, Jewell CM (2020) Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med 5(1):e10142. https://doi.org/10.1002/btm2.10142

    Article  PubMed  Google Scholar 

  55. Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M (2019) Phage-based vaccines. Adv Drug Deliv Rev 145:40–56. https://doi.org/10.1016/j.addr.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  56. Bolhassani A, Zahedifard F (2012) Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 131(8):1733–1743. https://doi.org/10.1002/ijc.27640

    Article  CAS  PubMed  Google Scholar 

  57. Majewska J, Kaźmierczak Z, Lahutta K, Lecion D, Szymczak A, Miernikiewicz P, Drapała J, Harhala M, Marek-Bukowiec K, Jędruchniewicz N, Owczarek B, Górski A, Dąbrowska K (2019) Induction of phage-specific antibodies by two therapeutic staphylococcal bacteriophages administered per os. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02607

  58. Barderas R, Benito-Peña E (2019) The 2018 Nobel Prize in chemistry: phage display of peptides and antibodies. Anal Bioanal Chem 411(12):2475–2479. https://doi.org/10.1007/s00216-019-01714-4

    Article  CAS  PubMed  Google Scholar 

  59. Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S (2022) Antibody display technologies: selecting the cream of the crop. Biol Chem 403(5-6):455–477

    CAS  PubMed  Google Scholar 

  60. Klemm J, Pekar L, Krah S, Zielonka S (2021) Antibody display systems. Introd Antibody Eng:65–96

    Google Scholar 

  61. Mimmi S, Maisano D, Quinto I, Iaccino E (2019) Phage display: an overview in context to drug discovery. Trends Pharmacol Sci 40(2):87–91

    CAS  PubMed  Google Scholar 

  62. Saw PE, Song E-W (2019) Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 10(11):787–807

    PubMed  PubMed Central  Google Scholar 

  63. Davies J, Riechmann L (1995) Antibody VH domains as small recognition units. Bio/Technology 13(5):475–479

    CAS  PubMed  Google Scholar 

  64. Foglizzo V, Marchiò S (2021) Bacteriophages as therapeutic and diagnostic vehicles in cancer. Pharmaceuticals 14(2). https://doi.org/10.3390/ph14020161

  65. Poul M-A, Becerril B, Nielsen UB, Morisson P, Marks JD (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 301(5):1149–1161

    CAS  PubMed  Google Scholar 

  66. Tordsson J, Lavasani S, Ohlsson L, Karlström P, Svedberg H, Abrahmsén L, Brodin T (2000) A3—a novel colon and pancreatic cancer reactive antibody from a primate phage library selected using intact tumour cells. Int J Cancer 87(4):559–568

    CAS  PubMed  Google Scholar 

  67. Pavoni E, Vaccaro P, Pucci A, Monteriù G, Beghetto E, Barca S, Dupuis ML, De Pasquale CA, Lugini A, Cianfriglia M (2004) Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage. BMC Cancer 4:1–10

    Google Scholar 

  68. Mueller J, Gaertner FC, Blechert B, Janssen K-P, Essler M (2009) Targeting of tumor blood vessels: a phage-displayed tumor-homing peptide specifically binds to matrix metalloproteinase-2-processed collagen IV and blocks angiogenesis in vivo targeting cryptic sites in vascular collagen IV. Mol Cancer Res 7(7):1078–1085

    CAS  PubMed  Google Scholar 

  69. Ghosh D, Peng X, Leal J, Mohanty RP (2018) Peptides as drug delivery vehicles across biological barriers. J Pharm Investig 48:89–111

    CAS  PubMed  Google Scholar 

  70. Shadidi M, Sioud M (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J 17(2):256–258

    CAS  PubMed  Google Scholar 

  71. Du B, Han H, Wang Z, Kuang L, Wang L, Yu L, Wu M, Zhou Z, Qian M (2010) Targeted drug delivery to hepatocarcinoma in vivo by phage-displayed specific binding peptide targeted drug delivery to hepatocarcinoma by peptide. Mol Cancer Res 8(2):135–144

    CAS  PubMed  Google Scholar 

  72. Fukuta T, Asai T, Kiyokawa Y, Nakada T, Bessyo-Hirashima K, Fukaya N, Hyodo K, Takase K, Kikuchi H, Oku N (2017) Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. Int J Pharm 524(1-2):364–372

    CAS  PubMed  Google Scholar 

  73. Wang T, D’Souza GGM, Bedi D, Fagbohun OA, Potturi LP, Papahadjopoulos-Sternberg B, Petrenko VA, Torchilin VP (2010) Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein. Nanomedicine 5(4):563–574

    CAS  PubMed  Google Scholar 

  74. Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S (2023) Genetic engineering of bacteriophages: key concepts, strategies, and applications. Biotechnology Advances:108116

    Google Scholar 

  75. Gagliardi M, Ashizawa AT (2021) The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicine 9(4). https://doi.org/10.3390/biomedicines9040433

  76. Shen Y, Wang J, Li Y, Yang CT, Zhou X (2023) Modified bacteriophage for tumor detection and targeted therapy. Nanomaterials (Basel) 13(4). https://doi.org/10.3390/nano13040665

  77. Fage C, Lemire N, Moineau S (2021) Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol 68:174–180. https://doi.org/10.1016/j.copbio.2020.11.012

    Article  CAS  PubMed  Google Scholar 

  78. Kaur S, Kumari A, Kumari Negi A, Galav V, Thakur S, Agrawal M, Sharma V (2021) Nanotechnology based approaches in phage therapy: overcoming the pharmacological barriers. Front Pharmacol 12:699054

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rehman S, Ali Z, Khan M, Bostan N, Naseem S (2019) The dawn of phage therapy. Rev Med Virol 29(4):e2041

    PubMed  Google Scholar 

  80. Lund PE, Hunt RC, Gottesman MM, Kimchi-Sarfaty C (2010) Pseudovirions as vehicles for the delivery of siRNA. Pharm Res 27(3):400–420. https://doi.org/10.1007/s11095-009-0012-2

    Article  CAS  PubMed  Google Scholar 

  81. Oehmig A, Fraefel C, Breakefield XO, Ackermann M (2004) Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus. Curr Gene Ther 4(4):385–408

    CAS  PubMed  Google Scholar 

  82. Sunderland KS, Yang M, Mao C (2017) Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Ed 56(8):1964–1992

    CAS  Google Scholar 

  83. Farr R, Choi DS, Lee S-W (2014) Phage-based nanomaterials for biomedical applications. Acta Biomater 10(4):1741–1750

    CAS  PubMed  Google Scholar 

  84. Bakhshinejad B, Karimi M, Sadeghizadeh M (2014) Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31(8):110. https://doi.org/10.1007/s12032-014-0110-9

    Article  CAS  PubMed  Google Scholar 

  85. Qi H, Lu H, Qiu HJ, Petrenko V, Liu A (2012) Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol 417(3):129–143. https://doi.org/10.1016/j.jmb.2012.01.038

    Article  CAS  PubMed  Google Scholar 

  86. Jiang H, Cai X-m, Shi B-z, Zhang J, Li Z-h, Gu J-r (2008) Development of efficient RNA interference system using EGF-displaying phagemid particles. Acta Pharmacol Sin 29(4):437–442

    CAS  PubMed  Google Scholar 

  87. Loomba R, Liang TJ (2006) Novel approaches to new therapies for hepatitis B virus infection. Antivir Ther 11(1):1–15

    CAS  PubMed  Google Scholar 

  88. Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL, Chu Q, Hegge JO, Klein JJ, Wakefield DH, Oropeza CE, Deckert J, Roehl I, Jahn-Hofmann K, Hadwiger P, Vornlocher HP, McLachlan A, Lewis DL (2013) Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther 21(5):973–985. https://doi.org/10.1038/mt.2013.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roach DR, Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5(3):e1062590. https://doi.org/10.1080/21597081.2015.1062590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z (2022) Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. Smart Medicine 1(1):e20220015. https://doi.org/10.1002/SMMD.20220015

    Article  Google Scholar 

  91. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162–173. https://doi.org/10.4292/wjgpt.v8.i3.162

    Article  PubMed  PubMed Central  Google Scholar 

  92. Durr HA, Leipzig ND (2023) Advancements in bacteriophage therapies and delivery for bacterial infection. Mater Adv 4(5):1249–1257. https://doi.org/10.1039/d2ma00980c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gierlicka I, Rattan SIS, Wnuk M (2022) Perspectives on using bacteriophages in biogerontology research and interventions. Chemico-Biological Interactions:110098

    Google Scholar 

  94. Gierlicka I, Rattan SIS, Wnuk M (2022) Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 366:110098. https://doi.org/10.1016/j.cbi.2022.110098

    Article  CAS  PubMed  Google Scholar 

  95. Zhao Z, Ukidve A, Kim J, Mitragotri S (2020) Targeting strategies for tissue-specific drug delivery. Cell 181(1):151–167. https://doi.org/10.1016/j.cell.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  96. Aliakbar Ahovan Z, Hashemi A, De Plano LM, Gholipourmalekabadi M, Seifalian A (2020) Bacteriophage based biosensors: trends, outcomes and challenges. Nanomaterials (Basel) 10(3). https://doi.org/10.3390/nano10030501

  97. Aljabali AAA, Obeid MA (2020) Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanosci & Nanotechnol-Asia 10(6):748–765

    CAS  Google Scholar 

  98. Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK (2022) Bacteriophage-based biosensors: a platform for detection of foodborne bacterial pathogens from food and environment. Biosensors 12(10). https://doi.org/10.3390/bios12100905

  99. El-Moghazy AY, Wisuthiphaet N, Yang X, Sun G, Nitin N (2022) Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 135:108811. https://doi.org/10.1016/j.foodcont.2022.108811

    Article  CAS  Google Scholar 

  100. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13(2):1763–1786. https://doi.org/10.3390/s130201763

    Article  CAS  PubMed  Google Scholar 

  101. Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. J Mol Biol 5(1):18–36

    CAS  PubMed  Google Scholar 

  102. van de Putte P, Cramer S, Giphart-Gassler M (1980) Invertible DNA determines host specificity of bacteriophage Mu. Nature 286(5770):218–222

    PubMed  Google Scholar 

  103. Liang S, Qi Y, Yu H, Sun W, Raza SHA, Alkhorayef N, Alkhalil SS, Salama EEA, Zhang L (2023) Bacteriophage therapy as an application for bacterial infection in China. Antibiotics (Basel) 12(2). https://doi.org/10.3390/antibiotics12020417

  104. Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ (2021) Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals (Basel) 14(10). https://doi.org/10.3390/ph14101019

  105. Ling H, Lou X, Luo Q, He Z, Sun M, Sun J (2022) Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sinica B 12(12):4348–4364. https://doi.org/10.1016/j.apsb.2022.05.007

    Article  CAS  Google Scholar 

  106. Nilsson AS (2019) Pharmacological limitations of phage therapy. Ups J Med Sci 124(4):218–227. https://doi.org/10.1080/03009734.2019.1688433

    Article  PubMed  PubMed Central  Google Scholar 

  107. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114. https://doi.org/10.4161/bact.1.2.14590

    Article  PubMed  PubMed Central  Google Scholar 

  108. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11-12):536–540. https://doi.org/10.1016/j.drudis.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  109. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11(1):28–47

    CAS  PubMed  Google Scholar 

  110. Principi N, Silvestri E, Esposito S (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513

    PubMed  PubMed Central  Google Scholar 

  111. Serwer P, Wright ET, De La Chapa J, Gonzales CB (2021) Basics for improved use of phages for therapy. Antibiotics 10(6):723

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Brown R, Lengeling A, Wang B (2017) Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant Biol 5:42–54

    Google Scholar 

  113. Mahler M, Costa AR, van Beljouw SPB, Fineran PC, Brouns SJJ (2022) Approaches for bacteriophage genome engineering. Trends Biotechnol

    Google Scholar 

  114. Sahu R, Singh AK, Kumar A, Singh K, Kumar P (2022) Bacteriophages concept and applications: a review on phage therapy. Current Pharmaceutical Biotechnology

    Google Scholar 

  115. Yue H, Li Y, Yang M, Mao C (2022) T7 phage as an emerging nanobiomaterial with genetically tunable target specificity. Adv Sci 9(4):2103645

    CAS  Google Scholar 

  116. Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23(4):185–191

    CAS  PubMed  Google Scholar 

  117. Ricca E, Cutting SM (2003) Emerging applications of bacterial spores in nanobiotechnology. J Nanobiotechnol 1:1–10

    Google Scholar 

  118. Rao VB, Zhu J (2022) Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr Opin Virol 55:101255

    CAS  PubMed  Google Scholar 

  119. Rodríguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends Microbiol 18(9):423–430

    PubMed  Google Scholar 

  120. Ye X, Hemida M, Zhang HM, Hanson P, Ye Q, Yang D (2012) Current advances in Phi29 pRNA biology and its application in drug delivery. Wiley Interdiscip Rev: RNA 3(4):469–481

    CAS  PubMed  Google Scholar 

  121. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ (2018) Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 16(12):760–773

    CAS  PubMed  Google Scholar 

  122. Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM, Gelbart WM, Parent KN (2015) Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 485:128–134. https://doi.org/10.1016/j.virol.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  123. Ju Z, Sun W (2017) Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 24(1):1898–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sokullu E, Soleymani Abyaneh H, Gauthier MA (2019) Plant/bacterial virus-based drug discovery, drug delivery, and therapeutics. Pharmaceutics 11(5):211

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Akhtar S (1995) Delivery strategies for antisense oligonucleotide therapeutics. CRC Press

    Google Scholar 

  126. Vaks L, Benhar I (2011) In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines. J Nanobiotechnol 9:1–10

    Google Scholar 

  127. Bar H, Yacoby I, Benhar I (2008) Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8(1):1–14

    Google Scholar 

  128. Shukla S, Hu H, Cai H, Chan S-K, Boone CE, Beiss V, Chariou PL, Steinmetz NF (2020) Plant viruses and bacteriophage-based reagents for diagnosis and therapy. Ann Rev Virol 7:559–587

    CAS  Google Scholar 

  129. Zangabad PS, Karimi M, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR (2017) Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale 9(4):1356–1392

    PubMed  PubMed Central  Google Scholar 

  130. Winkle M, El-Daly SM, Fabbri M, Calin GA (2021) Noncoding RNA therapeutics—Challenges and potential solutions. Nat Rev Drug Discov 20(8):629–651

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Roberts TC, Langer R, Wood MJA (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19(10):673–694

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo P (2005) Bacterial virus φ29 DNA-packaging motor and its potential applications in gene therapy and nanotechnology. Protein Nanotechnology: Protocols, Instrumentation, and Applications, pp 285–324

    Google Scholar 

  133. Musacchio T, Torchilin VP (2013) siRNA delivery: from basics to therapeutic applications. Front Biosci-Landmark 18(1):58–79

    CAS  Google Scholar 

  134. Young SA (2002) Genetic features of Sodalis glossinidius, a symbiont bacterium of tsetse flies. University of Glasgow (United Kingdom)

    Google Scholar 

  135. Hwang YJ, Myung H (2020) Engineered bacteriophage T7 as a potent anticancer agent in vivo. Front Microbiol 11:491001

    PubMed  PubMed Central  Google Scholar 

  136. Zhang X, Zhang X, Gao H, Qing G (2022) Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics 12(5):2041

    PubMed  PubMed Central  Google Scholar 

  137. Jin M, Chen J, Zhao X, Hu G, Wang H, Liu Z, Chen WH (2022) An engineered λ phage enables enhanced and strain-specific killing of enterohemorrhagic Escherichia coli. Microbiol Spectr 10(4):e0127122. https://doi.org/10.1128/spectrum.01271-22

    Article  CAS  PubMed  Google Scholar 

  138. Redei GP, Koncz C, Phillips JD (2006) Changing images of the gene. Adv Genet 56:53–100

    CAS  PubMed  Google Scholar 

  139. Duong MM, Carmody CM, Nugen SR (2020) Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Analyst 145(19):6291–6297

    CAS  PubMed  Google Scholar 

  140. Zahid M, Phillips BE, Albers SM, Giannoukakis N, Watkins SC, Robbins PD (2010) Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PloS One 5(8):e12252

    PubMed  PubMed Central  Google Scholar 

  141. Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y (2022) Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: a review. Compr Rev Food Sci Food Saf 21(2):1843–1867

    CAS  PubMed  Google Scholar 

  142. Corbisier P, Van Der Lelie D, Borremans B, Provoost A, De Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244

    CAS  Google Scholar 

  143. Łobocka M, Dąbrowska K, Górski A (2021) Engineered bacteriophage therapeutics: rationale, challenges and future. BioDrugs 35(3):255–280

    PubMed  PubMed Central  Google Scholar 

  144. Armanious A, Mezzenga R (2022) A roadmap for building waterborne virus traps. JACS Au 2(10):2205–2221. https://doi.org/10.1021/jacsau.2c00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bhardwaj J, Hong S, Jang J, Han C-H, Lee J, Jang J (2021) Recent advancements in the measurement of pathogenic airborne viruses. J Hazard Mater 420:126574

    CAS  PubMed  PubMed Central  Google Scholar 

  146. George L, Indig FE, Abdelmohsen K, Gorospe M (2018) Intracellular RNA-tracking methods. Royal Society Open Biology 8(10):180104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alaa A. A. Aljabali or Murtaza M. Tambuwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aljabali, A.A.A., Aljbaly, M.B.M., Obeid, M.A., Shahcheraghi, S.H., Tambuwala, M.M. (2024). The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics