Skip to main content

A Metagenomics Approach to Enumerate Bacteriophages in a Food Niche

  • Protocol
  • First Online:
Bacteriophages

Abstract

Dairy fermentation relies on the activity of starter cultures composed primarily of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus strains to produce consistent, high-quality products. Bacteriophages are a constant threat to the industry, often causing slowed or failed fermentation resulting in significant economic losses. To ensure the continuation of reliable fermentation practices, it is important to detect and monitor the phage populations impacting different starter cultures. This has traditionally been done primarily through culture-dependent methods but has since expanded into viral metagenomics. Here we outline a protocol for a targeted virome extraction from a dairy whey sample, followed by subsequent sequencing and phageome analysis of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahony J, van Sinderen D (2022) Virome studies of food production systems: time for ‘farm to fork’ analyses. Curr Opin Biotechnol 73:22–27. https://doi.org/10.1016/j.copbio.2021.06.014

    Article  CAS  PubMed  Google Scholar 

  2. Jung JY, Lee SH, Kim JM et al (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274. https://doi.org/10.1128/AEM.02157-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suttle CA (2005) Viruses in the sea. Nature 437:356–361. https://doi.org/10.1038/nature04160

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasiah S, Bhavsar J, Thapar K et al (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357. https://doi.org/10.1016/j.resmic.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  5. Hoyles L, McCartney AL, Neve H et al (2014) Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol 165:803–812. https://doi.org/10.1016/j.resmic.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  6. de Melo AG, Levesque S, Moineau S (2018) Phages as friends and enemies in food processing. Curr Opin Biotechnol 49:185–190. https://doi.org/10.1016/j.copbio.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  7. Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science (80- ) 332:106–109. https://doi.org/10.1126/science.1198767

    Article  CAS  Google Scholar 

  8. Koskella B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38:916–931. https://doi.org/10.1111/1574-6976.12072

    Article  CAS  PubMed  Google Scholar 

  9. Safari F, Sharifi M, Farajnia S et al (2020) The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 40:119–137. https://doi.org/10.1080/07388551.2019.1674774

    Article  CAS  PubMed  Google Scholar 

  10. Samson JE, Moineau S (2013) Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368. https://doi.org/10.1146/annurev-food-030212-182541

    Article  CAS  PubMed  Google Scholar 

  11. Lavelle K, Murphy J, Fitzgerald B et al (2018) A decade of Streptococcus thermophilus phage evolution in an Irish dairy plant. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.02855-17

  12. Oliveira J, Mahony J, Hanemaaijer L et al (2018) Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J Dairy Sci 101:96–105. https://doi.org/10.3168/jds.2017-13403

    Article  CAS  PubMed  Google Scholar 

  13. Lillehaug D (1997) An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J Appl Microbiol 83:85–90

    Article  CAS  PubMed  Google Scholar 

  14. Marcó MB, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2:149–158. https://doi.org/10.4161/bact.21868

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2:63–77. https://doi.org/10.1016/j.coviro.2011.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rohwer F, Youle M (2011) Consider something viral in your research. Nat Rev Microbiol 9:308–309. https://doi.org/10.1038/nrmicro2563

    Article  CAS  Google Scholar 

  17. Patel A, Noble RT, Steele JA et al (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2:269–276. https://doi.org/10.1038/nprot.2007.6

    Article  CAS  PubMed  Google Scholar 

  18. Borsheim KY, Bratbak G, Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56:352–356. https://doi.org/10.1128/aem.56.2.352-356.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ács N, Gambino M, Brøndsted L (2020) Bacteriophage enumeration and detection methods. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.594868

  20. Eun-Jin P, Kyoung-Ho K, Abell GCJ et al (2011) Metagenomic analysis of the viral communities in fermented foods. Appl Environ Microbiol 77:1284–1291. https://doi.org/10.1128/AEM.01859-10

    Article  CAS  Google Scholar 

  21. Zablocki O, van Zyl L, Adriaenssens EM et al (2014) High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of antarctic soils. Appl Environ Microbiol 80:6888–6897. https://doi.org/10.1128/AEM.01525-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dugat-Bony E, Lossouarn J, De Paepe M et al (2020) Viral metagenomic analysis of the cheese surface: a comparative study of rapid procedures for extracting viral particles. Food Microbiol 85:103278. https://doi.org/10.1016/j.fm.2019.103278

    Article  CAS  PubMed  Google Scholar 

  23. Milani C, Casey E, Lugli GA et al (2018) Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX. Microbiome 6:145. https://doi.org/10.1186/s40168-018-0527-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Göller PC, Haro-Moreno JM, Rodriguez-Valera F et al (2020) Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome 8:1–16. https://doi.org/10.1186/s40168-020-0795-2

    Article  CAS  Google Scholar 

  25. Clooney AG, Sutton TDS, Shkoporov AN et al (2019) Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26:764–778.e5

    Article  CAS  PubMed  Google Scholar 

  26. Muhammed MK, Kot W, Neve H et al (2017) Metagenomic analysis of dairy bacteriophages: extraction method and pilot study on whey samples derived from using undefined and defined mesophilic starter cultures. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM.00888-17

  27. Colombo S, Arioli S, Gargari G et al (2018) Characterization of airborne viromes in cheese production plants. J Appl Microbiol 125:1444–1454. https://doi.org/10.1111/jam.14046

    Article  CAS  PubMed  Google Scholar 

  28. Szczepankowska AK, Górecki RK, Kołakowski P, Bardowski JK (2013) Lactic acid bacteria resistance to bacteriophage and prevention techniques to lower phage contamination in dairy fermentation. In: Kongo M (ed) Lactic acid bacteria. IntechOpen, Rijeka

    Google Scholar 

  29. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  31. Buchfink B, Reuter K, Drost H-G (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18:366–368. https://doi.org/10.1038/s41592-021-01101-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Milani C, Lugli GA, Fontana F et al (2021) METAnnotatorX2: a comprehensive tool for deep and shallow metagenomic data set analyses. mSystems 6:e00583–e00521. https://doi.org/10.1128/mSystems.00583-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muhammed MK, Krych L, Nielsen DS, Vogensen FK (2017) A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages. PLoS One 12:1–12. https://doi.org/10.1371/journal.pone.0174223

    Article  CAS  Google Scholar 

  34. Erkus O, De Jager VCL, Spus M et al (2013) Multifactorial diversity sustains microbial community stability. ISME J 7:2126–2136. https://doi.org/10.1038/ismej.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer Mahony or Douwe van Sinderen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

White, K. et al. (2024). A Metagenomics Approach to Enumerate Bacteriophages in a Food Niche. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics