Skip to main content

A Chemically Inducible Organelle Rerouting Assay to Probe Primary Cilium Assembly, Maintenance, and Disassembly in Cultured Cells

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2725))

Abstract

The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malicki JJ, Johnson CA (2017) The cilium: cellular antenna and central processing unit. Trends Cell Biol 27(2):126–140. https://doi.org/10.1016/j.tcb.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111(3):p39–p53. https://doi.org/10.1159/000208212. [pii] 000208212

    Article  CAS  PubMed  Google Scholar 

  3. Wheway G, Nazlamova L, Hancock JT (2018) Signaling through the primary cilium. Front Cell Dev Biol 6:8. https://doi.org/10.3389/fcell.2018.00008

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535. https://doi.org/10.1016/j.cub.2009.05.025. [pii] S0960-9822(09)01126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pedersen LB, Schroder JM, Satir P, Christensen ST (2012) The ciliary cytoskeleton. Compr Physiol 2(1):779–803. https://doi.org/10.1002/cphy.c110043

    Article  PubMed  Google Scholar 

  6. Focsa IO, Budisteanu M, Balgradean M (2021) Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 48:3. https://doi.org/10.3892/ijmm.2021.5009

    Article  CAS  Google Scholar 

  7. Ferkol TW, Leigh MW (2012) Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr 160(3):366–371. https://doi.org/10.1016/j.jpeds.2011.11.024

    Article  PubMed  Google Scholar 

  8. Mirvis M, Stearns T, James Nelson W (2018) Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 475(14):2329–2353. https://doi.org/10.1042/BCJ20170453

    Article  CAS  PubMed  Google Scholar 

  9. Conduit SE, Vanhaesebroeck B (2020) Phosphoinositide lipids in primary cilia biology. Biochem J 477(18):3541–3565. https://doi.org/10.1042/BCJ20200277

    Article  CAS  PubMed  Google Scholar 

  10. Conkar D, Firat-Karalar EN (2020) Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J. https://doi.org/10.1111/febs.15473

  11. Conkar D, Bayraktar H, Firat-Karalar EN (2019) Centrosomal and ciliary targeting of CCDC66 requires cooperative action of centriolar satellites, microtubules and molecular motors. Sci Rep 9(1):14250. https://doi.org/10.1038/s41598-019-50530-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel MM, Tsiokas L (2021) Insights into the regulation of ciliary disassembly. Cells 10(11). https://doi.org/10.3390/cells10112977

  13. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463. https://doi.org/10.1038/nrm2180. [pii] nrm2180

    Article  CAS  PubMed  Google Scholar 

  14. Breslow DK, Holland AJ (2019) Mechanism and regulation of centriole and cilium biogenesis. Annu Rev Biochem 88:691–724. https://doi.org/10.1146/annurev-biochem-013118-111153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanchez I, Dynlacht BD (2016) Cilium assembly and disassembly. Nat Cell Biol 18(7):711–717. https://doi.org/10.1038/ncb3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nigg EA, Holland AJ (2018) Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19(5):297–312. https://doi.org/10.1038/nrm.2017.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakayama K, Katoh Y (2018) Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J Biochem 163(3):155–164. https://doi.org/10.1093/jb/mvx087

    Article  CAS  PubMed  Google Scholar 

  18. Nachury MV (2014) How do cilia organize signalling cascades? Philos Trans R Soc Lond Ser B Biol Sci 369(1650). https://doi.org/10.1098/rstb.2013.0465

  19. Nachury MV, Mick DU (2019) Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-019-0116-4

  20. Werner S, Pimenta-Marques A, Bettencourt-Dias M (2017) Maintaining centrosomes and cilia. J Cell Sci 130(22):3789–3800. https://doi.org/10.1242/jcs.203505

    Article  CAS  PubMed  Google Scholar 

  21. Hsiao YC, Tuz K, Ferland RJ (2012) Trafficking in and to the primary cilium. Cilia 1(1):4. https://doi.org/10.1186/2046-2530-1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N (1999) Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J Cell Biol 147(5):969–980. https://doi.org/10.1083/jcb.147.5.969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN (2019) Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 20(6). https://doi.org/10.15252/embr.201947723

  24. Aydin OZ, Taflan SO, Gurkaslar C, Firat-Karalar EN (2020) Acute inhibition of centriolar satellite function and positioning reveals their functions at the primary cilium. PLoS Biol 18(6):e3000679. https://doi.org/10.1371/journal.pbio.3000679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gheiratmand L, Coyaud E, Gupta GD, Laurent EM, Hasegan M, Prosser SL, Goncalves J, Raught B, Pelletier L (2019) Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J. https://doi.org/10.15252/embj.2018101109

  26. Quarantotti V, Chen JX, Tischer J, Gonzalez Tejedo C, Papachristou EK, D’Santos CS, Kilmartin JV, Miller ML, Gergely F (2019) Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J. https://doi.org/10.15252/embj.2018101082

  27. Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159(2):255–266. https://doi.org/10.1083/jcb.200204023. [pii] jcb.200204023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Lee K, Malonis R, Sanchez I, Dynlacht BD (2016) Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. eLife 5. https://doi.org/10.7554/eLife.12950

  29. Monroe TO, Garrett ME, Kousi M, Rodriguiz RM, Moon S, Bai Y, Brodar SC, Soldano KL, Savage J, Hansen TF, Muzny DM, Gibbs RA, Barak L, Sullivan PF, Ashley-Koch AE, Sawa A, Wetsel WC, Werge T, Katsanis N (2020) PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat Commun 11(1):5903. https://doi.org/10.1038/s41467-020-19637-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He M, Agbu S, Anderson KV (2017) Microtubule motors drive hedgehog signaling in primary cilia. Trends Cell Biol 27(2):110–125. https://doi.org/10.1016/j.tcb.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  31. Mahjoub MR, Tsou MF (2013) The AmAZI1ng roles of centriolar satellites during development. PLoS Genet 9(12):e1004070. https://doi.org/10.1371/journal.pgen.1004070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. May EA, Kalocsay M, D’Auriac IG, Schuster PS, Gygi SP, Nachury MV, Mick DU (2021) Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol 220(5). https://doi.org/10.1083/jcb.202007207

  33. Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV (2015) Proteomics of primary cilia by proximity labeling. Dev Cell 35(4):497–512. https://doi.org/10.1016/j.devcel.2015.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han H (2018) RNA interference to knock down gene expression. Methods Mol Biol 1706:293–302. https://doi.org/10.1007/978-1-4939-7471-9_16

    Article  CAS  PubMed  Google Scholar 

  35. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  36. Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61(9):732–745. https://doi.org/10.1016/j.addr.2009.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524(7564):230–233. https://doi.org/10.1038/nature14580

    Article  CAS  PubMed  Google Scholar 

  38. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4(11):e264. https://doi.org/10.1038/mtna.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M (2017) A method for the acute and rapid degradation of endogenous proteins. Cell 171(7):1692–1706. e1618. https://doi.org/10.1016/j.cell.2017.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deshaies RJ (2015) Protein degradation: prime time for PROTACs. Nat Chem Biol 11(9):634–635. https://doi.org/10.1038/nchembio.1887

    Article  CAS  PubMed  Google Scholar 

  41. Holland AJ, Fachinetti D, Han JS, Cleveland DW (2012) Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc Natl Acad Sci U S A 109(49):E3350–E3357. https://doi.org/10.1073/pnas.1216880109

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6(12):917–922. https://doi.org/10.1038/nmeth.1401

    Article  CAS  PubMed  Google Scholar 

  43. Toure M, Crews CM (2016) Small-molecule PROTACS: new approaches to protein degradation. Angew Chem Int Ed Engl 55(6):1966–1973. https://doi.org/10.1002/anie.201507978

    Article  CAS  PubMed  Google Scholar 

  44. Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, Nakaoka H, Fukui K, Gamo K, Tominari Y, Takeuchi H, Saga Y, Hayashi KI, Kanemaki MT (2020) The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun 11(1):5701. https://doi.org/10.1038/s41467-020-19532-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayer TU (2003) Chemical genetics: tailoring tools for cell biology. Trends Cell Biol 13(5):270–277. https://doi.org/10.1016/s0962-8924(03)00077-1

    Article  CAS  PubMed  Google Scholar 

  46. Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B (2015) Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol 22(5):671–682. https://doi.org/10.1016/j.chembiol.2015.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Passmore JB, Nijenhuis W, Kapitein LC (2021) From observing to controlling: inducible control of organelle dynamics and interactions. Curr Opin Cell Biol 71:69–76. https://doi.org/10.1016/j.ceb.2021.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Putyrski M, Schultz C (2012) Protein translocation as a tool: the current rapamycin story. FEBS Lett 586(15):2097–2105. https://doi.org/10.1016/j.febslet.2012.04.061

    Article  CAS  PubMed  Google Scholar 

  49. Robinson MS, Hirst J (2013) Rapid inactivation of proteins by knocksideways. Curr Protoc Cell Biol 61:15.20.1–15.20.7. https://doi.org/10.1002/0471143030.cb1520s61

    Article  PubMed  Google Scholar 

  50. Robinson MS, Sahlender DA, Foster SD (2010) Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18(2):324–331. https://doi.org/10.1016/j.devcel.2009.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stanton BZ, Chory EJ, Crabtree GR (2018) Chemically induced proximity in biology and medicine. Science 359(6380). https://doi.org/10.1126/science.aao5902

  52. Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA, Germain GS, Abraham RT, Houghton PJ (1999) Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59(4):886–894

    CAS  PubMed  Google Scholar 

  53. Bentley M, Banker G (2015) A novel assay to identify the trafficking proteins that bind to specific vesicle populations. Curr Protoc Cell Biol 69:13.8.1–13.8.12. https://doi.org/10.1002/0471143030.cb1308s69

    Article  PubMed  Google Scholar 

  54. Hong SR, Wang CL, Huang YS, Chang YC, Chang YC, Pusapati GV, Lin CY, Hsu N, Cheng HC, Chiang YC, Huang WE, Shaner NC, Rohatgi R, Inoue T, Lin YC (2018) Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun 9(1):1732. https://doi.org/10.1038/s41467-018-03952-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin YC, Niewiadomski P, Lin B, Nakamura H, Phua SC, Jiao J, Levchenko A, Inoue T, Rohatgi R, Inoue T (2013) Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 9(7):437–443. https://doi.org/10.1038/nchembio.1252

    Article  CAS  PubMed  Google Scholar 

  56. Booth DG, Hood FE, Prior IA, Royle SJ (2011) A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J 30(5):906–919. https://doi.org/10.1038/emboj.2011.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheeseman LP, Harry EF, McAinsh AD, Prior IA, Royle SJ (2013) Specific removal of TACC3-ch-TOG-clathrin at metaphase deregulates kinetochore fiber tension. J Cell Sci 126(Pt 9):2102–2113. https://doi.org/10.1242/jcs.124834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eguether T, Cordelieres FP, Pazour GJ (2018) Intraflagellar transport is deeply integrated in hedgehog signaling. Mol Biol Cell 29(10):1178–1189. https://doi.org/10.1091/mbc.E17-10-0600

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kubo A, Tsukita S (2003) Non-membranous granular organelle consisting of PCM-1: subcellular distribution and cell-cycle-dependent assembly/disassembly. J Cell Sci 116(Pt 5):919–928

    Article  CAS  PubMed  Google Scholar 

  60. Odabasi E, Batman U, Firat-Karalar EN (2020) Unraveling the mysteries of centriolar satellites: time to rewrite the textbooks about the centrosome/cilium complex. Mol Biol Cell 31(9):866–872. https://doi.org/10.1091/mbc.E19-07-0402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Firat-Karalar EN, Stearns T (2015) Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods Cell Biol 129:153–170. https://doi.org/10.1016/bs.mcb.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kapitein LC, Schlager MA, van der Zwan WA, Wulf PS, Keijzer N, Hoogenraad CC (2010) Probing intracellular motor protein activity using an inducible cargo trafficking assay. Biophys J 99(7):2143–2152. https://doi.org/10.1016/j.bpj.2010.07.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ryan EL, Shelford J, Massam-Wu T, Bayliss R, Royle SJ (2021) Defining endogenous TACC3-chTOG-clathrin-GTSE1 interactions at the mitotic spindle using induced relocalization. J Cell Sci 134(3). https://doi.org/10.1242/jcs.255794

  64. Guardia CM, De Pace R, Sen A, Saric A, Jarnik M, Kolin DA, Kunwar A, Bonifacino JS (2019) Reversible association with motor proteins (RAMP): a streptavidin-based method to manipulate organelle positioning. PLoS Biol 17(5):e3000279. https://doi.org/10.1371/journal.pbio.3000279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N (2001) Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 20(15):4041–4054. https://doi.org/10.1093/emboj/20.15.4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoogenraad CC, Wulf P, Schiefermeier N, Stepanova T, Galjart N, Small JV, Grosveld F, de Zeeuw CI, Akhmanova A (2003) Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J 22(22):6004–6015. https://doi.org/10.1093/emboj/cdg592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Siekierka JJ, Wiederrecht G, Greulich H, Boulton D, Hung SH, Cryan J, Hodges PJ, Sigal NH (1990) The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase. J Biol Chem 265(34):21011–21015

    Article  CAS  PubMed  Google Scholar 

  68. Nijenhuis W, van Grinsven MMP, Kapitein LC (2020) An optimized toolbox for the optogenetic control of intracellular transport. J Cell Biol 219(4). https://doi.org/10.1083/jcb.201907149

  69. Varma S, Khandelwal RL (2007) Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70(S6K) in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB. Biochim Biophys Acta 1770(1):71–78. https://doi.org/10.1016/j.bbagen.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  70. Tee AR (2018) The target of rapamycin and mechanisms of cell growth. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030880

  71. Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 13(1):99–107. https://doi.org/10.1016/j.chembiol.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  72. Liberles SD, Diver ST, Austin DJ, Schreiber SL (1997) Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc Natl Acad Sci U S A 94(15):7825–7830. https://doi.org/10.1073/pnas.94.15.7825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stankunas K, Bayle JH, Gestwicki JE, Lin YM, Wandless TJ, Crabtree GR (2003) Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Mol Cell 12(6):1615–1624. https://doi.org/10.1016/s1097-2765(03)00491-x

    Article  CAS  PubMed  Google Scholar 

  74. Lauring MC, Zhu T, Luo W, Wu W, Yu F, Toomre D (2019) New software for automated cilia detection in cells (ACDC). Cilia 8:1. https://doi.org/10.1186/s13630-019-0061-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansen JN, Rassmann S, Stuven B, Jurisch-Yaksi N, Wachten D (2021) CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. Eur Phys J E Soft Matter 44(2):18. https://doi.org/10.1140/epje/s10189-021-00031-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sydor AM, Coyaud E, Rovelli C, Laurent E, Liu H, Raught B, Mennella V (2018) PPP1R35 is a novel centrosomal protein that regulates centriole length in concert with the microcephaly protein RTTN. eLife 7. https://doi.org/10.7554/eLife.37846

  77. Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC (2016) Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 35(3):302–318. https://doi.org/10.15252/embj.201592929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adrian M, Nijenhuis W, Hoogstraaten RI, Willems J, Kapitein LC (2017) A phytochrome-derived photoswitch for intracellular transport. ACS Synth Biol 6(7):1248–1256. https://doi.org/10.1021/acssynbio.6b00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ballister ER, Ayloo S, Chenoweth DM, Lampson MA, Holzbaur ELF (2015) Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr Biol 25(10):R407–R408. https://doi.org/10.1016/j.cub.2015.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114. https://doi.org/10.1038/nature14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dema A, van Haren J, Wittmann T (2022) Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules. Curr Biol 32(5):1197–1205. e1194. https://doi.org/10.1016/j.cub.2022.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fielmich LE, Schmidt R, Dickinson DJ, Goldstein B, Akhmanova A, van den Heuvel S (2018) Optogenetic dissection of mitotic spindle positioning in vivo. eLife 7. https://doi.org/10.7554/eLife.38198

  83. Jagric M, Risteski P, Martincic J, Milas A, Tolic IM (2021) Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces. eLife 10. https://doi.org/10.7554/eLife.61170

  84. Milas A, Jagric M, Martincic J, Tolic IM (2018) Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells. Methods Cell Biol 145:191–215. https://doi.org/10.1016/bs.mcb.2018.03.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EMBO Installation Grant 3622 and Young Investigator Award to ENF and TUBITAK BIDEB 120C148 grant to ENF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Nur Firat-Karalar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Turan, F.B., Ercan, M.E., Firat-Karalar, E.N. (2024). A Chemically Inducible Organelle Rerouting Assay to Probe Primary Cilium Assembly, Maintenance, and Disassembly in Cultured Cells. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics