Skip to main content

Multiscale Molecular Dynamics Simulations of Ice-Binding Proteins

  • Protocol
  • First Online:
Ice Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2730))

Abstract

Ice-binding proteins (IBPs) are a diverse class of proteins that are essential for the survival of organisms in cold conditions. IBPs are diverse in their function and can prevent or promote ice growth and selectively bind to specific crystallographic planes of the growing ice lattice. Moreover, IBPs are widely utilized to modulate ice crystal growth and recrystallization in the food industry and as cryoprotectants to preserve biological matter. A key unresolved aspect of the mode of action is how the ice-binding sites of these proteins distinguish between ice and water and interact with multiple crystal facets of the ice. The use of molecular dynamics (MD) simulation allows us to thoroughly investigate the binding mechanism and energetics of ice-binding proteins, to complement and expand on the mechanistic understandings gained from experiments. In this chapter, we describe a series of molecular dynamics simulation methodologies to investigate the mechanism of action of ice-binding proteins. Specifically, we provide detailed instructions to set up MD simulations to study the binding and interaction of ice-binding proteins using atomistic and coarse-grained simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590. https://doi.org/10.1038/267585a0

    Article  CAS  PubMed  Google Scholar 

  2. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652. https://doi.org/10.1038/nsb0902-646

    Article  CAS  PubMed  Google Scholar 

  3. DeVries Arthur L, Wohlschlag Donald E (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075. https://doi.org/10.1126/science.163.3871.1073

    Article  Google Scholar 

  4. DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908. https://doi.org/10.1016/S0021-9258(18)63073-X

    Article  CAS  PubMed  Google Scholar 

  5. Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542. https://doi.org/10.1146/annurev-biochem-060815-014546

    Article  CAS  PubMed  Google Scholar 

  6. Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555. https://doi.org/10.1016/j.tibs.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  7. Wolber PK et al (1986) Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci 83:7256. https://doi.org/10.1073/pnas.83.19.7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartmann S et al (2013) Immersion freezing of ice nucleation active protein complexes. Atmos Chem Phys 13:5751–5766. https://doi.org/10.5194/acp-13-5751-2013

    Article  CAS  Google Scholar 

  9. Liou Y-C, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–324. https://doi.org/10.1038/35018604

    Article  CAS  PubMed  Google Scholar 

  10. Leinala EK et al (2002) A β-helical antifreeze protein isoform with increased activity: structural and functional insights*. J Biol Chem 277:33349–33352. https://doi.org/10.1074/jbc.M205575200

    Article  CAS  PubMed  Google Scholar 

  11. Hakim A et al (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding*. J Biol Chem 288:12295–12304. https://doi.org/10.1074/jbc.M113.450973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci 108:7363. https://doi.org/10.1073/pnas.1100429108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V (2018) Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J Am Chem Soc 140:4905–4912. https://doi.org/10.1021/jacs.8b01246

    Article  CAS  PubMed  Google Scholar 

  14. Hudait A et al (2018) Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Proc Natl Acad Sci 115:8266. https://doi.org/10.1073/pnas.1806996115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu Y, Hudait A, Molinero V (2019) How size and aggregation of ice-binding proteins control their ice nucleation efficiency. J Am Chem Soc 141:7439–7452. https://doi.org/10.1021/jacs.9b01854

    Article  CAS  PubMed  Google Scholar 

  16. Hudait A, Qiu Y, Odendahl N, Molinero V (2019) Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice. J Am Chem Soc 141:7887–7898. https://doi.org/10.1021/jacs.9b02248

    Article  CAS  PubMed  Google Scholar 

  17. Pandey R et al (2016) Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv 2:e1501630. https://doi.org/10.1126/sciadv.1501630

    Article  PubMed  PubMed Central  Google Scholar 

  18. Graether SP, Jia Z (2001) Modeling pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J 80:1169–1173. https://doi.org/10.1016/S0006-3495(01)76093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  20. MacKerell AD, Feig M, Brooks CL (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699. https://doi.org/10.1021/ja036959e

    Article  CAS  PubMed  Google Scholar 

  21. Meister K et al (2015) Investigation of the ice-binding site of an insect antifreeze protein using sum-frequency generation spectroscopy. J Phys Chem Lett 6:1162–1167. https://doi.org/10.1021/acs.jpclett.5b00281

    Article  CAS  PubMed  Google Scholar 

  22. Odendahl N (2016) Comparison of popular force fields for molecular modelling of proteins applied to ice binding Tenebrio Molitor antifreeze proteins. B.S. in Chemistry Honors thesis, The University of Utah, Salt Lake City

    Google Scholar 

  23. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505. https://doi.org/10.1063/1.2121687

    Article  CAS  PubMed  Google Scholar 

  24. Babin V, Leforestier C, Paesani F (2013) Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput 9:5395–5403. https://doi.org/10.1021/ct400863t

    Article  CAS  PubMed  Google Scholar 

  25. Babin V, Medders GR, Paesani F (2014) Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput 10:1599–1607. https://doi.org/10.1021/ct500079y

    Article  CAS  PubMed  Google Scholar 

  26. Medders GR, Babin V, Paesani F (2014) Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J Chem Theory Comput 10:2906–2910. https://doi.org/10.1021/ct5004115

    Article  CAS  PubMed  Google Scholar 

  27. Horn HW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678. https://doi.org/10.1063/1.1683075

    Article  CAS  PubMed  Google Scholar 

  28. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. https://doi.org/10.1021/j100308a038

    Article  CAS  Google Scholar 

  29. Abascal JLF, Sanz E, García Fernández R, Vega C (2005) A potential model for the study of ices and amorphous water: TIP4P/ice. J Chem Phys 122:234511. https://doi.org/10.1063/1.1931662

    Article  CAS  PubMed  Google Scholar 

  30. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  32. Phillips JC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130. https://doi.org/10.1063/5.0014475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith W, Yong CW, Rodger PM (2002) DL_POLY: application to molecular simulation. Mol Simul 28:385–471. https://doi.org/10.1080/08927020290018769

    Article  CAS  Google Scholar 

  34. Thompson AP et al (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  35. http://paesanigroup.ucsd.edu/software/mbx.html

  36. Moore EB, Molinero V (2011) Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479:506–508. https://doi.org/10.1038/nature10586

    Article  CAS  PubMed  Google Scholar 

  37. Lupi L et al (2017) Role of stacking disorder in ice nucleation. Nature 551:218–222. https://doi.org/10.1038/nature24279

    Article  CAS  PubMed  Google Scholar 

  38. Hudait A, Molinero V (2014) Ice crystallization in ultrafine water–salt aerosols: nucleation, ice-solution equilibrium, and internal structure. J Am Chem Soc 136:8081–8093. https://doi.org/10.1021/ja503311r

    Article  CAS  PubMed  Google Scholar 

  39. Metya AK, Molinero V (2021) Is ice nucleation by organic crystals nonclassical? An assessment of the monolayer hypothesis of ice nucleation. J Am Chem Soc 143:4607–4624. https://doi.org/10.1021/jacs.0c12012

    Article  CAS  PubMed  Google Scholar 

  40. Hudait A, Molinero V (2016) What determines the ice polymorph in clouds? J Am Chem Soc 138:8958–8967. https://doi.org/10.1021/jacs.6b05227

    Article  CAS  PubMed  Google Scholar 

  41. Qiu Y, Molinero V (2018) Why is it so difficult to identify the onset of ice Premelting? J Phys Chem Lett 9:5179–5182. https://doi.org/10.1021/acs.jpclett.8b02244

    Article  CAS  PubMed  Google Scholar 

  42. Hudait A, Qiu S, Lupi L, Molinero V (2016) Free energy contributions and structural characterization of stacking disordered ices. Phys Chem Chem Phys 18:9544–9553. https://doi.org/10.1039/C6CP00915H

    Article  CAS  PubMed  Google Scholar 

  43. Molinero V, Moore EB (2009) Water modeled as an intermediate element between carbon and silicon. J Phys Chem B 113:4008–4016. https://doi.org/10.1021/jp805227c

    Article  CAS  PubMed  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  45. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  46. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322. https://doi.org/10.1103/PhysRevB.17.1302

    Article  CAS  Google Scholar 

  47. Grønbech-Jensen N, Farago O (2013) A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol Phys 111:983–991. https://doi.org/10.1080/00268976.2012.760055

    Article  CAS  Google Scholar 

  48. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  49. Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34. https://doi.org/10.1016/0021-9991(83)90014-1

    Article  CAS  Google Scholar 

  50. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  51. Kolafa J (2004) Time-reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules. J Comput Chem 25:335–342. https://doi.org/10.1002/jcc.10385

    Article  CAS  PubMed  Google Scholar 

  52. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  53. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  54. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271. https://doi.org/10.1103/PhysRevB.31.5262

    Article  CAS  Google Scholar 

  55. Fileti EE, Chaudhuri P, Canuto S (2004) Relative strength of hydrogen bond interaction in alcohol–water complexes. Chem Phys Lett 400:494–499. https://doi.org/10.1016/j.cplett.2004.10.149

    Article  CAS  Google Scholar 

  56. Jacobson LC, Hujo W, Molinero V (2010) Amorphous precursors in the nucleation of clathrate hydrates. J Am Chem Soc 132:11806–11811. https://doi.org/10.1021/ja1051445

    Article  CAS  PubMed  Google Scholar 

  57. Kamberaj H, Low RJ, Neal MP (2005) Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. J Chem Phys 122:224114. https://doi.org/10.1063/1.1906216

    Article  CAS  PubMed  Google Scholar 

  58. Miller TF et al (2002) Symplectic quaternion scheme for biophysical molecular dynamics. J Chem Phys 116:8649–8659. https://doi.org/10.1063/1.1473654

    Article  CAS  Google Scholar 

  59. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  60. Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28:784–805. https://doi.org/10.1103/PhysRevB.28.784

    Article  CAS  Google Scholar 

  61. Grossfield A, WHAM; version 2.0.6, http://membrane.urmc.rochester.edu/content/wham

  62. Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409:318–321. https://doi.org/10.1038/35053024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges discussions with Prof. Valeria Molinero, Dr. Yuqing Qiu, Prof. Francesco Paesani, and Dr. Daniel Moberg. The simulation trajectories were generated using the supercomputing resources and computer time provided by the Center for High Performance at the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpa Hudait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hudait, A. (2024). Multiscale Molecular Dynamics Simulations of Ice-Binding Proteins. In: Drori, R., Stevens, C. (eds) Ice Binding Proteins. Methods in Molecular Biology, vol 2730. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3503-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3503-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3502-5

  • Online ISBN: 978-1-0716-3503-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics