Skip to main content

Type I Lipoteichoic Acid (LTA) Purification by Hydrophobic Interaction Chromatography and Structural Analysis by 2D Nuclear Magnetic Resonance (NMR) Spectroscopy

  • Protocol
  • First Online:
The Bacterial Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2727))

  • 460 Accesses

Abstract

Type I lipoteichoic acid (LTA) is a glycerol phosphate polymer found in the cell envelope of diverse Gram-positive bacteria. The glycerol phosphate backbone is often further decorated with D-alanine and/or sugar residues. Here, we provide details of a 1-butanol extraction and purification method of type I LTA by hydrophobic interaction chromatography. The protocol has been adapted from methods originally described by Fischer et al. (Eur J Biochem 133:523–530, 1983) and further optimized by Morath et al. (J Exp Med 193:393–397, 2001). We also present information on a 2D nuclear magnetic resonance (NMR) analysis method to gain chemical and structural information of the purified LTA material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schneewind O, Missiakas D (2014) Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 196(6):1133–1142. https://doi.org/10.1128/JB.01155-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11(1):35–45. https://doi.org/10.1002/cbic.200900557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6(4):276–287. https://doi.org/10.1038/nrmicro1861

    Article  CAS  PubMed  Google Scholar 

  5. Reichmann NT, Gründling A (2011) Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 319(2):97–105. https://doi.org/10.1111/j.1574-6968.2011.02260.x

    Article  CAS  PubMed  Google Scholar 

  6. Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100. https://doi.org/10.1146/annurev-micro-091213-112949

    Article  CAS  PubMed  Google Scholar 

  7. Fischer W, Koch HU, Haas R (1983) Improved preparation of lipoteichoic acids. Eur J Biochem 133(3):523–530. https://doi.org/10.1111/j.1432-1033.1983.tb07495.x

    Article  CAS  PubMed  Google Scholar 

  8. Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193(3):393–397. https://doi.org/10.1084/jem.193.3.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morath S, Geyer A, Spreitzer I, Hermann C, Hartung T (2002) Structural decomposition and heterogeneity of commercial lipoteichoic acid preparations. Infect Immun 70(2):938–944. https://doi.org/10.1128/IAI.70.2.938-944.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morath S, von Aulock S, Hartung T (2005) Structure/function relationships of lipoteichoic acids. J Endotoxin Res 11(6):348–356. https://doi.org/10.1179/096805105X67328

    Article  CAS  PubMed  Google Scholar 

  11. Kim HY, Kim AR, Seo HS, Baik JE, Ahn KB, Yun CH, Han SH (2018) Lipoproteins in Streptococcus gordonii are critical in the infection and inflammatory responses. Mol Immunol 101:574–584. https://doi.org/10.1016/j.molimm.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, Kirikae T, Götz F (2006) Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 177(5):3162–3169. https://doi.org/10.4049/jimmunol.177.5.3162

    Article  CAS  PubMed  Google Scholar 

  13. von Aulock S, Hartung T, Hermann C (2007) Comment on “not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus”. J Immunol 178(5):2610.; author reply 2610-2611. https://doi.org/10.4049/jimmunol.178.5.2610

    Article  Google Scholar 

  14. Percy MG, Karinou E, Webb AJ, Gründling A (2016) Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain-containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications. J Bacteriol 198(15):2029–2042. https://doi.org/10.1128/JB.00116-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wörmann ME, Corrigan RM, Simpson PJ, Matthews SJ, Gründling A (2011) Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol 79(3):566–583. https://doi.org/10.1111/j.1365-2958.2010.07472.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morath S, Stadelmaier A, Geyer A, Schmidt RR, Hartung T (2002) Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J Exp Med 195(12):1635–1640. https://doi.org/10.1084/jem.20020322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research in the Rismondo laboratory is supported by the German Research Foundation (DFG) grant RI 2920/3-1 and the Gründling laboratory is supported by the Wellcome Trust grant 210671/Z/18/Z/WT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeanine Rismondo or Angelika Gründling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rismondo, J., Gründling, A. (2024). Type I Lipoteichoic Acid (LTA) Purification by Hydrophobic Interaction Chromatography and Structural Analysis by 2D Nuclear Magnetic Resonance (NMR) Spectroscopy. In: Ton-That, H. (eds) The Bacterial Cell Wall. Methods in Molecular Biology, vol 2727. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3491-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3491-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3490-5

  • Online ISBN: 978-1-0716-3491-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics