Skip to main content

Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas

  • Protocol
  • First Online:
Pseudomonas aeruginosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2721))

Abstract

Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, de Lorenzo V, Prokop Z, Damborsky J (2015) Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Factories 14:201. https://doi.org/10.1186/s12934-015-0393-3

    Article  CAS  Google Scholar 

  2. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  3. Tabor JJ, Levskaya A, Voigt CA (2011) Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405(2):315–324. https://doi.org/10.1016/j.jmb.2010.10.038

    Article  CAS  PubMed  Google Scholar 

  4. Baumschlager A, Aoki SK, Khammash M (2017) Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth Biol 6(11):2157–2167. https://doi.org/10.1021/acssynbio.7b00169

    Article  CAS  PubMed  Google Scholar 

  5. Möglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385(5):1433–1444. https://doi.org/10.1016/j.jmb.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  6. Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M (2008) Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci U S A 105(28):9528–9533. https://doi.org/10.1073/pnas.0801826105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ (2019) Optogenetic control of Bacillus subtilis gene expression. Nat Commun 10(1):3099. https://doi.org/10.1038/s41467-019-10906-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hueso-Gil A, Nyerges Á, Pál C, Calles B, de Lorenzo V (2020) Multiple-site diversification of regulatory sequences enables interspecies operability of genetic devices. ACS Synth Biol 9(1):104–114. https://doi.org/10.1021/acssynbio.9b00375

    Article  CAS  PubMed  Google Scholar 

  9. Nikel PI, de Lorenzo V (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng 50:142–155. https://doi.org/10.1016/j.ymben.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  10. Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C (2020) Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 104(18):7745–7766. https://doi.org/10.1007/s00253-020-10811-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x

    Article  PubMed  Google Scholar 

  12. D’Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF (2010) TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312(1):84–92. https://doi.org/10.1111/j.1574-6968.2010.02105.x

    Article  CAS  PubMed  Google Scholar 

  13. Ackermann M (2013) Microbial individuality in the natural environment. ISME J 7(3):465–467. https://doi.org/10.1038/ismej.2012.131

    Article  CAS  PubMed  Google Scholar 

  14. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30(9):453–465. https://doi.org/10.1016/j.tibtech.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  15. Halan B, Letzel T, Schmid A, Buehler K (2014) Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J 9(10):1339–1349. https://doi.org/10.1002/biot.201400341

    Article  CAS  PubMed  Google Scholar 

  16. Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2014) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16(3):628–642. https://doi.org/10.1111/1462-2920.12360

    Article  CAS  PubMed  Google Scholar 

  17. Hecht GB, Newton A (1995) Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J Bacteriol 177(21):6223–6229. https://doi.org/10.1128/jb.177.21.6223-6229.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/mmbr.00043-12

    Article  PubMed  PubMed Central  Google Scholar 

  19. D’Argenio DA, Miller SI (2004) Cyclic di-GMP as a bacterial second messenger. Microbiology (Reading) 150(Pt 8):2497–2502. https://doi.org/10.1099/mic.0.27099-0

    Article  CAS  PubMed  Google Scholar 

  20. Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. https://doi.org/10.1016/j.ymben.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  21. Gross R, Buehler K, Schmid A (2013) Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 110(2):424–436. https://doi.org/10.1002/bit.24629

    Article  CAS  PubMed  Google Scholar 

  22. Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87(12):4645–4649. https://doi.org/10.1073/pnas.87.12.4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the SETH (RTI2018-095584-B-C42) (MINECO/FEDER) and SyCoLiM (ERA-COBIOTECH 2018 - PCI2019-111859-2) Projects of the Spanish Ministry of Science and Innovation, the MADONNA (H2020-FET-OPEN-RIA-2017-1-766975), BioRoboost (H2020-NMBP-BIO-CSA-2018-820699), SynBio4Flav (H2020-NMBP-TR-IND/H2020-NMBP-BIO-2018-814650) and MIX-UP (MIX-UP H2020-BIO-CN-2019-870294) Contracts of the European Union and the InGEMICS-CM (S2017/BMD-3691) Project of the Comunidad de Madrid - European Structural and Investment Funds (FSE, FECER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hueso-Gil, A., Calles, B., de Lorenzo, V. (2024). Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas. In: Bertoni, G., Ferrara, S. (eds) Pseudomonas aeruginosa. Methods in Molecular Biology, vol 2721. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3473-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3473-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3472-1

  • Online ISBN: 978-1-0716-3473-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics