Skip to main content

Quantitative Determination of Antibacterial Activity During Bacterial Coculture

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

  • 882 Accesses

Abstract

Antibacterial activity assays are an important tool in the assessment of the ability of one bacterium to kill or inhibit the growth of another, for example, during the study of the Type VI secretion system (T6SS) and the antibacterial toxins it secretes. The method we describe here can detect the ability of a bacterial strain to kill or inhibit other bacterial cells in a contact-dependent manner when cocultured on an agar surface. It is particularly useful since it enumerates the recovery of viable target cells and thus enables quantification of the antibacterial activity. We provide a detailed description of how to measure the T6SS-dependent antibacterial activity of a bacterium such as Serratia marcescens against a competitor prokaryotic organism, Escherichia coli, and describe possible variations in the method to allow adaptation to other attacker and target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallegos-Monterrosa R, Coulthurst SJ (2021) The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 45:1–18

    Article  Google Scholar 

  2. Coulthurst S (2019) The type VI secretion system: a versatile bacterial weapon. Microbiology 165:503–515

    Article  CAS  PubMed  Google Scholar 

  3. Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ (2020) Type VI secretion system effector proteins: effective weapons for bacterial competitiveness. Cell Microbiol 22:1–9

    Article  Google Scholar 

  4. Jurėnas D, Journet L (2021) Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol 115:383–394

    Article  PubMed  Google Scholar 

  5. Monjarás Feria J, Valvano MA (2020) An overview of anti-eukaryotic T6SS effectors. Front Cell Infect Microbiol 10

    Google Scholar 

  6. Shneider MM, Buth SA, Ho BT et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell AB, Hood RD, Bui NK et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwarz S, West TE, Boyer F et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gueguen E, Cascales E (2013) Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl Environ Microbiol 79:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hachani A, Lossi NS, Filloux A (2013) A visual assay to monitor T6SS-mediated bacterial competition. J Vis Exp e50103

    Google Scholar 

  11. Alcoforado Diniz J, Coulthurst SJ (2015) Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 197:2350–2360

    Article  PubMed  PubMed Central  Google Scholar 

  12. English G, Trunk K, Rao VA et al (2012) New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86:921–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fritsch MJ, Trunk K, Diniz JA et al (2013) Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics 12:2735–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murdoch SL, Trunk K, English G et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193:6057–6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mariano G, Trunk K, Williams DJ et al (2019) A family of type VI secretion system effector proteins that form ion-selective pores. Nat Commun 10:5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hood RD, Singh P, Hsu FS et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma LS, Hachani A, Lin JS et al (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alves JA, Leal FC, Previato-Mello M et al (2022) A quorum sensing-regulated type VI secretion system containing multiple nonredundant VgrG proteins is required for interbacterial competition in Chromobacterium violaceum. Microbiol Spectr 10:e01576–e01522

    Article  PubMed  PubMed Central  Google Scholar 

  19. MacIntyre DL, Miyata ST, Kitaoka M et al (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci 107:19520–19524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trunk K, Peltier J, Liu YC et al (2018) The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3:920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Casadaban M, Cohen S (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76:4530–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PhD studentship to J.A.D.) and Wellcome (Senior Fellowship to S.J.C., PhD studentship to REH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Coulthurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alcoforado Diniz, J., Earl, C., Hernandez, R.E., Hollmann, B., Coulthurst, S.J. (2024). Quantitative Determination of Antibacterial Activity During Bacterial Coculture. In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_37

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics