Skip to main content

Protein–Protein Interactions: Bimolecular Fluorescence Complementation and Cytology Two Hybrid

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

  • 790 Accesses

Abstract

Identifying protein–protein interactions between machine components of bacterial secretion systems and their cognate substrates is central to delineating how the machines operate to translocate their substrates. Further, establishing which among the machine components and their substrates interact with each other facilitates (i) advancement in our understanding of the architecture and assembly of the machines, (ii) understanding the substrates’ translocation routes and mechanisms, and (iii) how the machines and the substrates talk to each other. Currently, though diverse biochemical methods exist in identifying direct and indirect protein–protein interactions, they primarily remain in vitro and can be quite labor intensive. They also may capture/exhibit false-positive interactions because of barrier breakdowns as part of methodology. Thus, adopting novel genetic approaches to help visualize the same in vivo can yield quick, advantageous, reliable, and informative protein–protein interactions data. Here, we describe the easily adoptable bimolecular fluorescence complementation and cytology-based two-hybrid assays to understand the bacterial secretions systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guzman-Herrador DL, Fernandez-Gomez A, Llosa M (2023) Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Front Cell Infect Microbiol 13:1146000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nyfeler B, Michnick SW, Hauri H-P (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci 102:6350–6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11:527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ding Z, Zhao Z, Jakubowski SJ et al (2002) A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol 184:5572–5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor KW, Kim J-G, Su XB et al (2012) Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate Xanthomonas virulence. PLoS Pathog 8:e1002768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller KE, Kim Y, Huh W-K, Park H-O (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427:2039–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kodama Y, Hu C-D (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  10. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91:10340–10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh I, Hamilton AD, Regan L (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122:5658–5659

    Article  CAS  Google Scholar 

  12. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  PubMed  Google Scholar 

  15. Uğurlu Ö, Evran S (2021) Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 582:43–48

    Article  PubMed  Google Scholar 

  16. Webster SS, Lee CK, Schmidt WC, Wong GCL, O’Toole GA (2021) Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proc Natl Acad Sci U S A 118:e2105566118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakalis PA, van Heusden GPH, Hooykaas PJJ (2014) Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiology Open 3:104–117

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X-E, Cui Z, Wang D (2016) Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosens Bioelectron 76:243–250

    Article  CAS  PubMed  Google Scholar 

  19. Hu C-D, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  PubMed  Google Scholar 

  20. Hu C-D, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi Z, Gao X, Zhang W et al (2022) Novel Bimolecular Fluorescence Complementation (BiFC) assay for in vivo visualization of the protein-protein interactions and cellular protein complex localization. Res Square (Preprint). https://doi.org/10.21203/rs.3.rs-1738770/v2

  22. Wang S, Ding M, Chen X, Chang L, Sun Y (2017) Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells. Biomed Opt Express 8:3119–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hua Y, Ju J, Wang X et al (2018) Screening for host proteins interacting with Escherichia coli O157:H7 EspF using bimolecular fluorescence complementation. Future Microbiol 13:37–58

    Article  CAS  PubMed  Google Scholar 

  24. McDonald HJ, Kweon H, Kurnfuli S, Risser DD (2022) A DnaK(Hsp70) chaperone system connects type IV pilus activity to polysaccharide secretion in cyanobacteria. MBio 13:e0051422

    Article  PubMed  Google Scholar 

  25. Harwood TV, Zuniga EG, Kweon H, Risser DD (2021) The cyanobacterial taxis protein HmpF regulates type IV pilus activity in response to light. Proc Natl Acad Sci U S A 118:e2023988118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong Y, Lu G, Duan J, Liu W, Zhang Y (2018) Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol 19:39

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singh V, Jain M (2022) Recent advancements in CRISPR-Cas toolbox for imaging applications. Crit Rev Biotechnol 42:508–531

    CAS  PubMed  Google Scholar 

  28. Lim HC, Bernhardt TG (2019) A PopZ-linked apical recruitment assay for studying protein-protein interactions in the bacterial cell envelope. Mol Microbiol 112:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varberg JM, Gardner JM, McCroskey S et al (2020) High-throughput identification of nuclear envelope protein interactions in Schizosaccharomyces pombe using an arrayed membrane yeast-two hybrid library. G3 Bethesda Md 10:4649–4663

    Article  CAS  PubMed  Google Scholar 

  30. Florentin A, Kordonsky A, Yariv E et al (2022) Split-chloramphenicol acetyl transferase assay to study protein-protein interactions and ubiquitylation in Escherichia coli. Bio-Protoc 12:e4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bao L, Redondo C, Findlay JBC et al (2009) Deciphering soluble and membrane protein function using yeast systems (Review). Mol Membr Biol 26:127–135

    Article  CAS  PubMed  Google Scholar 

  32. Gueiros-Filho FJ, Losick R (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16:2544–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Peter (Prof. Peter J Christie) and Bill (Prof. William Margolin), both from Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA. Peter was instrumental in mentoring and providing excellent opportunity to train as a postdoc in his lab and Bill for all the help, guidance, and training in fluorescent microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamohan Atmakuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Purkait, D., Ilyas, M., Atmakuri, K. (2024). Protein–Protein Interactions: Bimolecular Fluorescence Complementation and Cytology Two Hybrid. In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics