Skip to main content

Thermodynamic Characterization of Nucleic Acid Nanoparticles Hybridization by UV Melting

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2709))

Abstract

The advances in nucleic acid nanotechnology have given rise to various elegantly designed structural complexes fabricated from DNA, RNA, chemically modified RNA strands, and their mixtures. The structural properties of NA nanoparticles (NANP) generally dictate and significantly impact biological function; and thus, it is critical to extract information regarding relative stabilities of the different structural forms. The adequate stability assessment requires knowledge of thermodynamic parameters that can be empirically derived using conventional UV-melting technique. The focus of this chapter is to describe methodology to evaluate thermodynamic data of NANPs complexation based on DNA 12 base-pair (bp) duplex formation as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schroeder SJ, Turner DH (2009) Optical melting measurements of nucleic acid thermodynamics. Methods Enzymol 468:371–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rangadurai A, Shi H, Xu Y, Liu B, Abou Assi H, Boom JD et al (2022) Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proc Natl Acad Sci U S A 119(24):e2112496119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khisamutdinov EF, Sweeney BA, Leontis NB (2021) Context-sensitivity of isosteric substitutions of non-Watson-Crick basepairs in recurrent RNA 3D motifs. Nucleic Acids Res 49(16):9574–9593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schurr JM (2021) A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 54:e5

    Article  PubMed  Google Scholar 

  5. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34(2):564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dinis TBV, Sousa F, Freire MG (2020) Insights on the DNA stability in aqueous solutions of ionic liquids. Front Bioeng Biotechnol 8:547857

    Article  PubMed  PubMed Central  Google Scholar 

  7. Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA (2008) Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry 47(19):5336–5353

    Article  CAS  PubMed  Google Scholar 

  8. Clark CL, Cecil PK, Singh D, Gray DM (1997) CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12.[d/r(GT/U)]12 and the influence of phosphorothioate substitution. Nucleic Acids Res 25(20):4098–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benkato K, O’Brien B, Bui MN, Jasinski DL, Guo P, Khisamutdinov EF (2017) Evaluation of thermal stability of RNA nanoparticles by temperature gradient gel electrophoresis (TGGE) in native condition. Methods Mol Biol 1632:123–133

    Article  CAS  PubMed  Google Scholar 

  10. Ladbury JE, Sturtevant JM, Leontis NB (1994) The thermodynamics of formation of a three-strand, DNA three-way junction complex. Biochemistry 33(22):6828–6833

    Article  CAS  PubMed  Google Scholar 

  11. Duguid JG, Bloomfield VA, Benevides JM, Thomas GJ (1996) DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. Biophys J 71(6):3350–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. You Y, Tataurov AV, Owczarzy R (2011) Measuring thermodynamic details of DNA hybridization using fluorescence. Biopolymers 95(7):472–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  PubMed  Google Scholar 

  15. SantaLucia J, Turner DH (1997) Measuring the thermodynamics of RNA secondary structure formation. Biopolymers 44(3):309–319

    Article  CAS  PubMed  Google Scholar 

  16. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32(1):e13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Obafemi Ajayi MT, Kinyanjui J, Head J (2014) Thermal analysis of DNA using the Shimadzu TMSPC-8 temperature controlled accessory. Shimadzu Excell Sci UV-0.13(SSI-UV-013):1–2

    Google Scholar 

  18. Howard KP (2000) Thermodynamics of DNA duplex formation – a biophysical chemistry laboratory experiment. J Chem Educ 77(11):1469–1471

    Article  CAS  Google Scholar 

  19. Johnson MB, Halman JR, Miller DK, Cooper JS, Khisamutdinov EF, Marriott I et al (2020) The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acids Res 48(20):11785–11798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McDowell JA, Turner DH (1996) Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. Biochemistry 35(45):14077–14089

    Article  CAS  PubMed  Google Scholar 

  21. Hill AC, Schroeder SJ (2017) Thermodynamic stabilities of three-way junction nanomotifs in prohead RNA. RNA 23(4):521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31

    Article  CAS  PubMed  Google Scholar 

  23. Shiman R, Draper DE (2000) Stabilization of RNA tertiary structure by monovalent cations. J Mol Biol 302(1):79–91

    Article  CAS  PubMed  Google Scholar 

  24. Puglisi JD, Tinoco I Jr (1989) Absorbance melting curves of RNA. Methods Enzymol 180:304–325

    Article  CAS  PubMed  Google Scholar 

  25. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83(11):3746–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petersheim M, Turner DH (1983) Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry 22(2):256–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1 R15EB031388-01 to E.F.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil F. Khisamutdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teter, M., Brumett, R., Coffman, A., Khisamutdinov, E.F. (2023). Thermodynamic Characterization of Nucleic Acid Nanoparticles Hybridization by UV Melting. In: Afonin, K.A. (eds) RNA Nanostructures. Methods in Molecular Biology, vol 2709. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3417-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3417-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3416-5

  • Online ISBN: 978-1-0716-3417-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics