Skip to main content

Reverse Transfection of Functional RNA Rings into Cancer Cells Followed by in Vitro Irradiation

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2709))

  • 248 Accesses

Abstract

RNA nanoparticles are promising therapeutic platforms to improve radiotherapy since they can be functionalized with multiple small interfering RNAs (RNAi) to simultaneously silence critical radioresistance genes. Here we describe the transfer of RNA rings to mammalian cancer cells through reverse transfection, followed by in vitro irradiation and biological assays as surrogates’ endpoints for radiotherapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin J, Zhao Q (2020) Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnol 18:75

    Article  CAS  Google Scholar 

  2. Hormuth DA, Farhat M, Christenson C, Curl B, Chad Quarles C, Chung C, Yankeelov TE (2022) Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy. Adv Drug Deliv Rev 187:114367

    Article  CAS  PubMed  Google Scholar 

  3. Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X (2019) Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 9:381–396

    Article  PubMed  Google Scholar 

  4. Huang C, Chen T, Zhu D, Huang Q (2020) Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem 8:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM (2019) Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 1871:419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA (2014 Oct 8) Multifunctional RNA nanoparticles. Nano Lett 14(10):5662–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C (2014) Current concepts in clinical radiation oncology. Radiat Environ Biophys 53:1–29

    Article  CAS  PubMed  Google Scholar 

  8. ESMO Interactive Guidelines. http://interactiveguidelines.esmo.org/esmo-web-app/toc/index.php?subjectAreaID=13&loadPdf=1. Accessed 21 Sep 2022

  9. Kirthi Koushik AS, Harish K, Avinash HU (2013) Principles of radiation oncology: a beams eye view for a surgeon. Indian J Surg Oncol 4:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59:928–942

    Article  PubMed  Google Scholar 

  11. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  12. Velic D, Couturier A, Ferreira M, Rodrigue A, Poirier G, Fleury F, Masson J-Y (2015) DNA damage signalling and repair inhibitors: the long-sought-after Achilles’ heel of cancer. Biomol Ther 5:3204–3259

    CAS  Google Scholar 

  13. Wang J-S, Wang H-J, Qian H-L (2018) Biological effects of radiation on cancer cells. Mil Med Res 5

    Google Scholar 

  14. Shao C, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci U S A 101:13495–13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho H de A, Villar RC (2018) Radiotherapy and immune response: the systemic effects of a local treatment. Clinics 73:e557s

    Article  PubMed  Google Scholar 

  16. Saito RF, Rangel MC, Halman JR, Chandler M, de Sousa Andrade LN, Odete-Bustos S, Furuya TK, Carrasco AGM, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R (2021) Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. Nanomedicine 36:102418

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  18. Rodríguez ML, López Rodríguez M, Cerezo Padellano L (2007) Toxicity associated to radiotherapy treatment in lung cancer patients. Clin Transl Oncol 9:506–512

    Article  Google Scholar 

  19. Cui C, Yang J, Li X, Liu D, Fu L, Wang X (2020) Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 19:58

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66:74–89

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Krishnamachary B, Pachecho-Torres J, Penet M, Bhujwalla ZM (2020) Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WIREs Nanomed Nanobiotechnol 12:e1595

    Article  Google Scholar 

  22. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M (2021) Novel perspectives towards RNA-based nano-theranostic approaches for cancer management. Nanomaterials (Basel) 11:34. https://doi.org/10.3390/nano11123330

    Article  CAS  Google Scholar 

  24. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong CA, Nam YS (2014) Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4:1211–1232

    Article  PubMed  PubMed Central  Google Scholar 

  26. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

  27. Bruno AC, Colello Bruno A, Mazaro SJ, Amaral LL, Rego EM, Oliveira HF, Pavoni JF (2017) Biological X-ray irradiator characterization for use with small animals and cells. Braz J Med Biol Res 50:9

    Article  Google Scholar 

Download references

Acknowledgments

This research was also supported in part by a FAPESP-USP SPRINT grant from The Graduate School at the University of North Carolina at Charlotte and Sao Paulo Research Foundation (FAPESP) under FAPESP Grants 2017/50029-6 and CNPq grants 426714/2016-0 and 305700/2017-0 (to R.C.) and a CAPES fellowship (to I.N.F). The authors would also like to thank Mara de Souza Junqueira, MSc, for performing cell irradiation at the University of São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Chammas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Freitas Saito, R., Ferreira, I.N., Rangel, M.C., Chammas, R. (2023). Reverse Transfection of Functional RNA Rings into Cancer Cells Followed by in Vitro Irradiation. In: Afonin, K.A. (eds) RNA Nanostructures. Methods in Molecular Biology, vol 2709. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3417-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3417-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3416-5

  • Online ISBN: 978-1-0716-3417-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics