Skip to main content

Laser-Induced Ocular Hypertension in a Mouse Model of Glaucoma

  • Protocol
  • First Online:
Retinal Ganglion Cells

Abstract

Glaucoma is a neurodegenerative disease that leads to the loss of retinal ganglion cells (RGC) and thus to blindness. There are numerous experimental models used for the study of this pathology. Among the different models, episcleral vein photocoagulation is one of the most widely used. In this model there is a transient increase in intraocular pressure that returns to normal values about 7 days after induction of ocular hypertension (OHT). In addition, typical glaucoma changes, such as loss of RGC, thinning of the optic nerve fiber layer, and glial activation, occur in this model. All these changes have been described in detail over time after OHT induction. In this chapter, we describe the detailed method of OHT induction in Swiss albino mice by diode laser photocoagulation of limbal and episcleral veins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinreb RN, Leung CKS, Crowston JG et al (2016) Primary open-angle glaucoma. Nat Rev Dis Prim 2. 16067. https://doi.org/10.1038/nrdp.2016.67

  2. Giangiacomo A, Coleman AL (2009) The epidemiology of glaucoma, in: glaucoma. Springer, Berlin Heidelberg, pp 13–21. https://doi.org/10.1007/978-3-540-69475-5_2

    Book  Google Scholar 

  3. Peters LL, Robledo RF, Bult CJ et al (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69. https://doi.org/10.1038/nrg2025

    Article  CAS  PubMed  Google Scholar 

  4. McKinnon SJ, Schlamp CL, Nickells RW (2009) Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 88:816–824. https://doi.org/10.1016/j.exer.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Bouhenni RA, Dunmire J, Sewell A et al (2012) Animal models of glaucoma. J Biomed Biotechnol 2012:1–11. https://doi.org/10.1155/2012/692609

    Article  Google Scholar 

  6. Chang B, Smith RS, Hawes NL et al (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21:405–409. https://doi.org/10.1038/7741

    Article  CAS  PubMed  Google Scholar 

  7. Schlamp CL, Li Y, Dietz JA et al (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7:66. https://doi.org/10.1186/1471-2202-7-66

  8. Howell GR, Libby RT, John SWM (2008) Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. Prog Brain Res 173:303–321. https://doi.org/10.1016/S0079-6123(08)01122-9

    Article  PubMed  Google Scholar 

  9. Bosco A, Inman DM, Steele MR et al (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446. https://doi.org/10.1167/iovs.07-1337

    Article  PubMed  Google Scholar 

  10. Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171:313–325. https://doi.org/10.1083/jcb.200506099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buckingham BP, Inman DM, Lambert W et al (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28:2735–2744. https://doi.org/10.1523/JNEUROSCI.4443-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morrison JC, Moore CG, Deppmeier LMH et al (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64:85–96. https://doi.org/10.1006/exer.1996.0184

    Article  CAS  PubMed  Google Scholar 

  13. Kipfer-Kauer A, McKinnon SJ, Frueh BE et al (2010) Distribution of amyloid precursor protein and amyloid-β in ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res 35:828–834. https://doi.org/10.3109/02713683.2010.494240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Almasieh M, MacIntyre JN, Pouliot M et al (2013) Acetylcholinesterase inhibition promotes retinal vasoprotection and increases ocular blood flow in experimental glaucoma. Invest Ophthalmol Vis Sci 54:3171–3183. https://doi.org/10.1167/iovs.12-11481

  15. Morrison JC, Cepurna WO, Johnson EC (2015) Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 141:23–32. https://doi.org/10.1016/j.exer.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chauhan BC, Pan J, Archibald ML et al (2002) Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 43:2969–2976. https://iovs.arvojournals.org/article.aspx?articleid=2162820

  17. Guo L, Moss SE, Alexander RA et al (2005) Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 46:175–182. https://doi.org/10.1167/iovs.04-0832

  18. Sappington RM, Carlson BJ, Crish SD et al (2010) The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci 51:207–216. https://doi.org/10.1167/iovs.09-3947

  19. Samsel PA, Kisiswa L, Erichsen JT et al (2011) A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest Ophthalmol Vis Sci 52:1671–1675. https://doi.org/10.1167/iovs.09-3921

  20. Frankfort BJ, Kareem Khan A, Tse DY et al (2013) Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest Ophthalmol Vis Sci 54:762–770. https://doi.org/10.1167/iovs.12-10581

  21. Schaub JA, Kimball EC, Steinhart MR et al (2017) Regional retinal ganglion cell axon loss in a Murine glaucoma model. Invest Ophthalmol Vis Sci 58:2765–2773. https://doi.org/10.1167/iovs.17-21761

  22. Ito YA, Belforte N, Cueva Vargas JL et al (2016) A magnetic microbead occlusion model to induce ocular hypertension-dependent glaucoma in mice. J Vis Exp 109: e53731. https://doi.org/10.3791/53731

  23. Chan KC, Yu Y, Ng SH et al (2019) Intracameral injection of a chemically cross-linked hydrogel to study chronic neurodegeneration in glaucoma. Acta Biomater 94:219–231. https://doi.org/10.1016/j.actbio.2019.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramírez JM, Ramírez AI, Salazar JJ et al (2004) Schlemm’s canal and the collector channels at different developmental stages in the human eye. Cells Tissue Organ 178:180–185. https://doi.org/82248 [pii]

  25. Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ et al (2009) Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 15:2578–2598

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M et al (2015) Effects of ocular hypertension in the visual system of pigmented mice. PLoS One 10(3):e012113410. https://doi.org/10.1371/journal.pone.0121134

  27. Levkovitch-Verbin H, Quigley HA, Martin KRG et al (2002) Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 43:402–410. https://pubmed.ncbi.nlm.nih.gov/11818384/

  28. Fu CT, Sretavan D (2010) Laser-induced ocular hypertension in albino CD-1 mice. Invest Ophthalmol Vis Sci 51:980–990. https://doi.org/10.1167/iovs.09-4324

  29. Ou Y, Jo RE, Ullian EM et al (2016) Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J Neurosci 36:9240–9252. https://doi.org/10.1523/JNEUROSCI.0940-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu HH, Zhang L, Shi M et al (2017) Comparison of laser and circumlimbal suture induced elevation of intraocular pressure in albino CD-1 mice. PLoS One 12(11):e0189094. https://doi.org/10.1371/journal.pone.0189094

  31. Zhang L, Li G, Shi M et al (2017) Establishment and characterization of an acute model of ocular hypertension by laser-induced occlusion of episcleral veins. Invest Ophthalmol Vis Sci 58:3879–3886. https://doi.org/10.1167/iovs.16-20807

  32. de Hoz R, Ramírez AI, González-Martín R et al (2018) Bilateral early activation of retinal microglial cells in a mouse model of unilateral laser-induced experimental ocular hypertension. Exp Eye Res 171:12–29. https://doi.org/10.1016/j.exer.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Fernández-Albarral JA, de Hoz R, Matamoros JA et al (2022) Retinal changes in astrocytes and Müller Glia in a mouse model of laser-induced glaucoma: a time-course study. Biomedicine 10(5):939. https://doi.org/10.3390/biomedicines10050939

  34. Fernandez-Albarral J, Ramírez A, De Hoz R et al (2022) Retinal microglial activation in glaucoma: evolution over time in a unilateral ocular hypertension model. Neural Regen Res 17:797–799. https://doi.org/10.4103/1673-5374.322454

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José A. Fernández-Albarral or Ana I. Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramírez, J.M. et al. (2023). Laser-Induced Ocular Hypertension in a Mouse Model of Glaucoma. In: Mead, B. (eds) Retinal Ganglion Cells. Methods in Molecular Biology, vol 2708. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3409-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3409-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3408-0

  • Online ISBN: 978-1-0716-3409-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics